Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein.

Bioorg Chem

School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia; Centre for Advanced Food Engineering, The University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Published: February 2022

The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to a major public health burden and has resulted in millions of deaths worldwide. As effective treatments are limited, there is a significant requirement for high-throughput, low resource methods for the discovery of novel antivirals. The SARS-CoV-2 spike protein plays a key role in viral entry and has been identified as a therapeutic target. Using the available spike crystal structure, we performed a virtual screen with a library of 527 209 natural compounds against the receptor binding domain of this protein. Top hits from this screen were subjected to a second, more comprehensive molecular docking experiment and filtered for favourable ADMET properties. The in vitro activity of 10 highly ranked compounds was assessed using a virus neutralisation assay designed to facilitate viral entry in a physiologically relevant manner via the plasma membrane route. Subsequently, four compounds ZINC02111387, ZINC02122196, SN00074072 and ZINC04090608 were identified to possess antiviral activity in the µM range. These findings validate the virtual screening method as a tool for identifying novel antivirals and provide a basis for future drug development against SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693770PMC
http://dx.doi.org/10.1016/j.bioorg.2021.105574DOI Listing

Publication Analysis

Top Keywords

virtual screening
8
sars-cov-2 spike
8
spike protein
8
novel antivirals
8
viral entry
8
screening vitro
4
vitro validation
4
validation natural
4
natural compound
4
compound inhibitors
4

Similar Publications

Structure-based discovery of dual-target inhibitors of the helicase from bagaza virus.

Int J Biol Macromol

January 2025

Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China. Electronic address:

Bagaza virus (BAGV) is a mosquito-borne flavivirus and has caused significant avian death in many regions, and also garnered recognition as a significant human pathogen causing diseases like encephalitis. The genome of BAGV encodes ten proteins including three structural proteins and seven nonstructural proteins. The C-terminus of the BAGV NS3 helicase serves as a helicase during BAGV replication, aiding in ATP hydrolysis and unwinding of double-stranded RNA.

View Article and Find Full Text PDF

The interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface.

View Article and Find Full Text PDF

Candida lusitaniae is one of the fungal species which causes serious health illnesses including peritonitis, vaginitis and fungemia, among others. Several antifungal drugs have been designed to tackle its infections but their efficacy is still questionable due to their associated side effects. Hence, there is a need to design those drugs which possess comparatively higher degree of therapeutic potential.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a complex, chronic mental disorder characterized by positive symptoms (such as delusions and hallucinations), negative symptoms (including anhedonia, alogia, avolition, and social withdrawal), and cognitive deficits (affecting attention, processing speed, verbal and visuospatial learning, problem-solving, working memory, and mental flexibility). Extensive animal and clinical studies have emphasized the NMDAR hypofunction hypothesis of SZ. Glycine plays a crucial role as an agonist of NMDAR, enhancing the receptor's affinity for glutamate and supporting normal synaptic function and plasticity, that is, signal transmission between neurons.

View Article and Find Full Text PDF

During the recent development of machine-learning (ML) methods for organic synthesis, the value of "failed experiments" has increasingly been acknowledged. Accordingly, we have developed an exhaustive database comprising 300 entries of experimental data obtained by performing ruthenium-catalyzed hydrogenation reactions using 10 ketones as substrates and 30 phosphine ligands. After evaluating the predictive performance of ML models using the constructed database, we conducted a virtual screening of commercially available phosphine ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!