AI Article Synopsis

Article Abstract

Autophagy and apoptosis are intertwined, and their relationship involves complex cross-talk. Whether the activation and inhibition of autophagy protect or damage neurons in the central nervous system has been a matter of longstanding controversy. We investigated the effect of autophagy on the apoptosis of cortical neurons after oxygen- and glucose-deprivation/reoxygenation (OGD/R) injury in vitro and found that protective mechanism activation was the predominant response to enhanced autophagy activation and increased autophagic flux. After successful establishment of an OGD/R model with cortical neurons, the autophagy activator rapamycin (Rap) or the late-autophagy inhibitor bafilomycin A1 (BafA1) was added to cell groups according to the experimental design. Cell viability was determined by Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays, and the apoptosis rate was measured by analysing Annexin V-FITC/PI-stained cells. The protein and mRNA expression levels of the apoptosis factors Caspase8 and Caspase3 and autophagy-associated proteins LC3 and p62 were measured by Western blotting and RT-qPCR. The extent of autophagic flux was determined by measuring the intensity of double immunofluorescence labelled protein after cells were transfected with RFP-GFP-LC3-expressing virus, and the ultrastructures of autophagosomes were observed by transmission electron microscopy (TEM). The results showed that cell viability decreased and that cells underwent autophagy and apoptosis after OGD/R. After the addition of Rap, cell viability was increased, and the apoptosis rate was decreased significantly. In addition, the level of the autophagic flux protein LC3II was increased, and the level of p62 was decreased. The number of autophagosomes and the ratio of autophagosomes to lysosomes were increased significantly. After BafA1 intervention, however, these results were reversed, with decreased cell viability, a significantly increased apoptosis rate, and disrupted autophagic flux. In conclusion, enhanced autophagy activation or autophagic flux exerted a significant protective effect on neurons after OGD/R injury in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2021.102070DOI Listing

Publication Analysis

Top Keywords

autophagic flux
20
autophagy apoptosis
16
cell viability
16
apoptosis rate
12
autophagy
8
apoptosis
8
model cortical
8
cortical neurons
8
ogd/r injury
8
injury vitro
8

Similar Publications

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

CprA is a short-chain dehydrogenase/reductase (SDR) that contributes to resistance against colistin and antimicrobial peptides. The cprA gene is conserved across Pseudomonas aeruginosa clades and its expression is directly regulated by the two-component system PmrAB. We have shown that cprA expression leads to the production of outer membrane vesicles (OMVs) that block autophagic flux and have a greater capacity to activate the non-canonical inflammasome pathway.

View Article and Find Full Text PDF

Spermidine Recovers the Autophagy Defects Underlying the Pathophysiology of Cell Trafficking Disorders.

J Inherit Metab Dis

January 2025

Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN; Esplugues de Llobregat, Barcelona, Spain.

Cell trafficking alterations are a growing group of disorders and one of the largest categories of Inherited Metabolic Diseases. They have complex and variable clinical presentation. Regarding neurological manifestations they can present a wide repertoire of symptoms ranging from neurodevelopmental to neurodegnerative disorders.

View Article and Find Full Text PDF

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

Induction of lysosome biogenesis is a novel function of the CGAS-STING1 pathway.

Autophagy

January 2025

Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China.

Induction of macroautophagy/autophagy has been established as an important function elicited by the CGAS-STING1 pathway during pathogen infection. However, it remains unknown whether lysosomal activity within the cell in these settings is concurrently enhanced to cope with the increased autophagic flux. Recently, we discovered that the CGAS-STING1 pathway elevates the degradative capacity of the cell by activating lysosome biogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!