CellDepot containing over 270 datasets from 8 species and many tissues serves as an integrated web application to empower scientists in exploring single-cell RNA-seq (scRNA-seq) datasets and comparing the datasets among various studies through a user-friendly interface with advanced visualization and analytical capabilities. To begin with, it provides an efficient data management system that users can upload single cell datasets and query the database by multiple attributes such as species and cell types. In addition, the graphical multi-logic, multi-condition query builder and convenient filtering tool backed by MySQL database system, allows users to quickly find the datasets of interest and compare the expression of gene(s) across these. Moreover, by embedding the cellxgene VIP tool, CellDepot enables fast exploration of individual dataset in the manner of interactivity and scalability to gain more refined insights such as cell composition, gene expression profiles, and differentially expressed genes among cell types by leveraging more than 20 frequently applied plotting functions and high-level analysis methods in single cell research. In summary, the web portal available at http://celldepot.bxgenomics.com, prompts large scale single cell data sharing, facilitates meta-analysis and visualization, and encourages scientists to contribute to the single-cell community in a tractable and collaborative way. Finally, CellDepot is released as open-source software under MIT license to motivate crowd contribution, broad adoption, and local deployment for private datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2021.167425 | DOI Listing |
Inflammation
January 2025
Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.
View Article and Find Full Text PDFACS Nano
January 2025
School of Medicine, Nankai University, Tianjin 300071, China.
Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!