A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Trehalose protects against cisplatin-induced cochlear hair cell damage by activating TFEB-mediated autophagy. | LitMetric

Trehalose protects against cisplatin-induced cochlear hair cell damage by activating TFEB-mediated autophagy.

Biochem Pharmacol

Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.

Published: March 2022

Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors, but its side effects limit its application. Ototoxicity, a major adverse effect of cisplatin, causes irreversible sensorineural hearing loss. Unfortunately, there are no effective approaches to protect against this damage. Autophagy has been shown to exert beneficial effects in various diseases models. However, the role of autophagy in cisplatin-induced ototoxicity has been not well elucidated. In this study, we aimed to investigate whether the novel autophagy activator trehalose could prevent cisplatin-induced damage in the auditory cell line HEI-OC1 and mouse cochlear explants and to further explore its mechanisms. Our data demonstrated that trehalose alleviated cisplatin-induced hair cell (HC) damage by inhibiting apoptosis, attenuating oxidative stress and rescuing mitochondrial dysfunction. Additionally, trehalose significantly enhanced autophagy levels in HCs, and inhibiting autophagy with 3-methyladenine (3-MA) abolished these protective effects. Mechanistically, we showed that the effect of trehalose was attributed to increased nuclear translocation of transcription factor EB (TFEB), and this effect could be mimicked by TFEB overexpression and inhibited by TFEB gene silencing or treatment with cyclosporin A (CsA), a calcineurin inhibitor. Taken together, our findings suggest that trehalose and autophagy play a role in protecting against cisplatin-induced ototoxicity and that pharmacological enhancement of TFEB-mediated autophagy is a potential treatment for cisplatin-induced damage in cochlear HCs and HEI-OC1 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2021.114904DOI Listing

Publication Analysis

Top Keywords

hair cell
8
cell damage
8
autophagy
8
tfeb-mediated autophagy
8
cisplatin-induced ototoxicity
8
cisplatin-induced damage
8
trehalose
6
cisplatin-induced
6
damage
5
trehalose protects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!