The Role of Inactivated NF-κB in Premature Ovarian Failure.

Am J Pathol

International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China. Electronic address:

Published: March 2022

Premature ovarian failure (POF) is defined as deployment of amenorrhea due to the cessation of ovarian function in a woman younger than 40 years old. The pathologic mechanism of POF is not yet well understood, although genetic aberrations, autoimmune damage, and environmental factors have been identified. The current study demonstrated that NF-κB inactivation is closely associated with the development of POF based on the data from literature and cyclophosphamide (Cytoxan)-induced POF mouse model. In the successfully established NF-κB-inactivated mouse model, the results showed the reduced expression of nuclear p65 and the increased expression of IκBα in ovarian granulosa cells; the reduced numbers of antral follicles; the reduction of Ki-67/proliferating cell nuclear antigen-labeled cell proliferation and enhanced Fas/FasL-dependent apoptosis in granulosa cells; the reduced level of E2 and anti-Müllerian hormone; the decreased expression of follicle-stimulating hormone receptor and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in granulosa cells, which was reversed in the context of blocking NF-κB signaling with BAY 11-7082; and the decreased expressions of glucose-regulated protein 78 (GRP78), activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1 in granulosa cells. Dual-luciferase reporter assay demonstrated that p50 stimulated the transcription of GRP78, and NF-κB affected the expression of follicle-stimulating hormone receptor and promoted granulosa cell proliferation through GRP78-mediated endoplasmic reticulum stress. Taken together, these data indicate, for the first time, that the inactivation of NF-κB signaling plays an important role in POF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2021.12.005DOI Listing

Publication Analysis

Top Keywords

granulosa cells
16
premature ovarian
8
ovarian failure
8
mouse model
8
cells reduced
8
cell proliferation
8
expression follicle-stimulating
8
follicle-stimulating hormone
8
hormone receptor
8
nf-κb signaling
8

Similar Publications

SO derivatives impair ovarian function by inhibiting Serpine1/NF-κB pathway-mediated ovarian granulosa cell survival.

J Hazard Mater

January 2025

Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China. Electronic address:

Sulfur dioxide (SO) is a contributor to air pollution. Human evidence has demonstrated an association between SO exposure and diminished ovarian reserve. The toxicity of SO is mainly attributed to its derivatives, bisulfite and sulfite, which have a variety of adverse effects on both human health and the environment, yet have been widely used as additives in food processing and transportation.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the role of miR-361-5p (a tumor suppressor) in regulating granulosa cell function by targeting SLC25A24, a key mitochondrial protein, to uncover potential therapeutic targets for diminished ovarian reserve (DOR).

Methods: This study included patients undergoing assisted reproductive technology treatment at our hospital. Granulosa cells were isolated from follicular fluid, and KGN cells were used for in vitro experiments.

View Article and Find Full Text PDF

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.

Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!