Summary: Information regarding pathways through voids in biomolecules and their roles in ligand transport is critical to our understanding of the function of many biomolecules. Recently, the advent of high-throughput molecular dynamics simulations has enabled the study of these pathways, and of rare transport events. However, the scale and intricacy of the data produced requires dedicated tools in order to conduct analyses efficiently and without excessive demand on users. To fill this gap, we developed the TransportTools, which allows the investigation of pathways and their utilization across large, simulated datasets. TransportTools also facilitates the development of custom-made analyses.

Availability And Implementation: TransportTools is implemented in Python3 and distributed as pip and conda packages. The source code is available at https://github.com/labbit-eu/transport_tools. Data are available in a repository and can be accessed via a link: https://doi.org/10.5281/zenodo.5642954.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896600PMC
http://dx.doi.org/10.1093/bioinformatics/btab872DOI Listing

Publication Analysis

Top Keywords

voids biomolecules
8
ligand transport
8
transporttools
4
transporttools library
4
library high-throughput
4
high-throughput analyses
4
analyses internal
4
internal voids
4
biomolecules ligand
4
transport summary
4

Similar Publications

Background: There is widespread interest in the design of portable electrochemical sensors for the selective monitoring of biomolecules. Dopamine (DA) is one of the neurotransmitter molecules that play a key role in the monitoring of some neuronal disorders such as Alzheimer's and Parkinson's diseases. Facile synthesis of the highly active surface interface to design a portable electrochemical sensor for the sensitive and selective monitoring of biomolecules (i.

View Article and Find Full Text PDF

Understanding Life at High Temperatures: Relationships of Molecular Channels in Enzymes of Methanogenic Archaea and Their Growth Temperatures.

Int J Mol Sci

December 2022

Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, 41012 Sevilla, Spain.

Analyses of protein structures have shown the existence of molecular channels in enzymes from Prokaryotes. Those molecular channels suggest a critical role of spatial voids in proteins, above all, in those enzymes functioning under high temperature. It is expected that these spaces within the protein structure are required to access the active site and to maximize availability and thermal stability of their substrates and cofactors.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) control biomolecular transport in and out of the nucleus. Disordered nucleoporins in the complex's pore form a permeation barrier, preventing unassisted transport of large biomolecules. Here, we combine coarse-grained simulations of experimentally derived NPC structures with a theoretical model to determine the microscopic mechanism of passive transport.

View Article and Find Full Text PDF

Summary: Information regarding pathways through voids in biomolecules and their roles in ligand transport is critical to our understanding of the function of many biomolecules. Recently, the advent of high-throughput molecular dynamics simulations has enabled the study of these pathways, and of rare transport events. However, the scale and intricacy of the data produced requires dedicated tools in order to conduct analyses efficiently and without excessive demand on users.

View Article and Find Full Text PDF

Shape is data and data is shape. Biologists are accustomed to thinking about how the shape of biomolecules, cells, tissues, and organisms arise from the effects of genetics, development, and the environment. Less often do we consider that data itself has shape and structure, or that it is possible to measure the shape of data and analyze it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!