A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes-Induced Atherosclerotic Plaque Instability. | LitMetric

Background Diabetes is known to accelerate atherosclerosis and increase plaque instability. However, there has been a lack of suitable animal models to study the effect of diabetes on plaque instability. We hypothesized that the tandem stenosis mouse model, which reflects plaque instability/rupture as seen in patients, can be applied to study the effects of diabetes and respective therapeutics on plaque instability/rupture. Methods and Results ApoE mice at 7 weeks of age were rendered diabetic with streptozotocin and 5 weeks later were surgically subjected to tandem stenosis in the right carotid artery and fed with a high-fat diet for 7 weeks. As a promising new antidiabetic drug class, a sodium glucose co-transporter 2 inhibitor was tested in this new model. Diabetic mice showed an increase in the size of unstable atherosclerotic plaques and in the plaque instability markers MCP-1, CD68, and necrotic core size. Mice treated with dapagliflozin demonstrated attenuated glucose and triglyceride levels. Importantly, these mice demonstrated plaque stabilization with enhanced collagen accumulation, increased fibrosis, increased cap-to-lesion height ratios, and significant upregulation of the vasculoprotective NADPH oxidase 4 expression. Conclusions The tandem stenosis mouse model in combination with the application of streptozotocin represents a highly suitable and unique mouse model for studying plaque destabilization under diabetic conditions. Furthermore, for the first time, we provide evidence of plaque-stabilizing effects of sodium-glucose co-transporter 2 inhibitor. Our data also suggest that this newly developed mouse model is an attractive preclinical tool for testing antidiabetic drugs for the highly sought-after potential to stabilize atherosclerotic plaques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075188PMC
http://dx.doi.org/10.1161/JAHA.121.022761DOI Listing

Publication Analysis

Top Keywords

plaque instability
16
mouse model
16
tandem stenosis
12
sodium-glucose co-transporter
8
plaque
8
stenosis mouse
8
plaque instability/rupture
8
co-transporter inhibitor
8
atherosclerotic plaques
8
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!