AI Article Synopsis

  • Current endovascular techniques for treating occluded cerebral vessels can yield varying responses based on the clot's characteristics in acute ischemic stroke.
  • MicroCT and electron microscopy were used to analyze clots in 16 patients, revealing that clinical CT findings (iso or hyperdense clots) aligned with detailed observations from these advanced imaging methods.
  • MicroCT values can indicate the composition of clots, specifically those rich in red blood cells, providing valuable insights into clot characteristics and their interaction with stent retrievers during treatment.

Article Abstract

Current treatment of occluded cerebral vessels can be done by a variety of endovascular techniques. Sometimes, the clot responds in varying degrees to the treatment chosen. The characterization of the clot occluding the arteries in acute ischemic stroke can help in understanding the underlying imaging features obtained from pre-treatment brain scans. For this reason, we explored the potential of microCT when combined with electron microscopy for clot characterization. Results were compared to the clinical CT findings. 16 patients (9 males, 8 females, age range 54-93 years) who were referred to our institution for acute stroke underwent dual-source CT. Clinical CT clots were seen as either iso or hyperdense. This was corroborated with micro-CT, and electron microscopy can show the detailed composition. MicroCT values can be used as an indicator for red blood cells-rich composition of clots. Meaningful information regarding the clot composition and modalities of embedding along the stent retrievers can be obtained through a combination of microCT and electron microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712945PMC
http://dx.doi.org/10.3389/fneur.2021.760148DOI Listing

Publication Analysis

Top Keywords

electron microscopy
12
characterization clot
8
acute stroke
8
clot
5
multimodality characterization
4
clot acute
4
stroke current
4
current treatment
4
treatment occluded
4
occluded cerebral
4

Similar Publications

Microwave welding with SiCNW/PMMA nanocomposite thin films: Enhanced joint strength and performance.

Nanotechnology

January 2025

Universiti Teknologi PETRONAS, Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, MALAYSIA, Seri Iskandar, Perak, 32610, MALAYSIA.

Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor.

View Article and Find Full Text PDF

Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear.

View Article and Find Full Text PDF

Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.

View Article and Find Full Text PDF

Bio-Conjugated Carbon Quantum Dots for Intracellular Uptake and Bioimaging Applications.

J Fluoresc

January 2025

Department of Medical Biotechnology and Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416 006, India.

Carbon quantum dots (CQDs) demonstrate outstanding biocompatibility and optical properties, making them ideal for monitoring cellular uptake. Due to their ultra-small size (typically < 10 nm) and fluorescent nature, CQDs hold significant potential as nanoparticles for bioimaging and tracking intracellular processes. The study examined the optimization parameters for conjugating calf thymus DNA (Ct-DNA) to CQDs to facilitate Ct-DNA internalization in mouse fibroblast cells (L929) and human breast cancer cells (MCF-7).

View Article and Find Full Text PDF

Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!