Rheumatoid arthritis (RA) is characterized by an impaired articular bone immune microenvironment, which is associated with regulatory T cells (Tregs) hypofunction and osteoclasts (OCs) hyperfunction and leads to articular bone erosion and systemic bone loss. Studies have shown that Tregs slow bone loss in RA by regulating the bone resorption function of OCs and the JAK/STAT signaling pathway can regulate the immunosuppressive function of Tregs and reduce the bone erosion function of OCs. Yi Shen Juan Bi Pill (YSJB) is a classic Chinese herbal compound for the treatment of RA. However, whether YSJB regulates bone immune microenvironment homeostasis through JAK/STAT signaling pathway remains unclear. Based on OC single culture, Treg single culture and OC-Treg coculture systems, treatments were performed using drug-containing serum, AG490 and JAK2 siRNA to explore whether YSJB-containing serum regulates the homeostasis of the bone immune microenvironment through the JAK/STAT signaling pathway. , YSJB treatment decreased the number of TRAP cells and the areas of bone resorption and inhibited the expression of RANK, NFATc1, c-fos, JAK2, and STAT3 in both the OC single culture system and the OC-Treg coculture system. Tregs further reduced the number of TRAP cells and the areas of bone resorption in the coculture system. YSJB promoted the secretion of IL-10 while inhibiting the expression of JAK2 and STAT3 in Tregs. Moreover, inhibiting the expression of JAK2 with the JAK2 inhibitor AG490 and JAK2 siRNA improved the immunosuppressive functions of Treg, inhibited OC differentiation and bone resorption. Our study demonstrates that YSJB can regulate OC-mediated bone resorption and Treg-mediated bone immunity through the JAK2/STAT3 signaling pathway. This study provides a new strategy for regulating the bone immune microenvironment in RA with traditional Chinese medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712765 | PMC |
http://dx.doi.org/10.3389/fphar.2021.746786 | DOI Listing |
Cureus
December 2024
Department of Periodontology, Karpaga Vinayaga Institute of Dental Sciences, Chengalpet, IND.
Background Chronic periodontitis is primarily caused by various bacterial species present in the plaque biofilm, which trigger a host inflammatory response. This leads to the abnormal release of inflammatory mediators such as proinflammatory cytokines (interleukin-1, interleukin-6, interleukin-8, and tumor necrosis factor-α), which are free radicals that cause alveolar bone resorption and tooth loss. (bitter gourd) is a widely used medicinal plant for the treatment of numerous diseases such as skin infections, diabetes, metabolic disorders, and carcinomas for several decades.
View Article and Find Full Text PDFBioact Mater
March 2025
Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China.
Spinal cord injury triggers leukocyte mobilization from the peripheral circulation to the injury site, exacerbating spinal cord damage. Simultaneously, bone marrow hematopoietic stem cells (HSCs) and splenic leukocytes rapidly mobilize to replenish the depleted peripheral blood leukocyte pool. However, current treatments for spinal cord injuries overlook interventions targeting peripheral immune organs and tissues, highlighting the need to develop novel drugs capable of effectively regulating peripheral immunity and treating spinal cord injuries.
View Article and Find Full Text PDFFront Immunol
December 2024
Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
Mesenchymal stem cells (MSCs), recognized for their self-renewal and multi-lineage differentiation capabilities, have garnered considerable wide attention since their discovery in bone marrow. Recent studies have underscored the potential of MSCs in immune regulation, particularly in the context of autoimmune diseases, which arise from immune system imbalances and necessitate long-term treatment. Traditional immunosuppressive drugs, while effective, can lead to drug tolerance and adverse effects, including a heightened risk of infections and malignancies.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
N6-methyladenosine is one of the most common and reversible post-transcriptional modifications in eukaryotes, and it is involved in alternative splicing and RNA transcription, degradation, and translation. It is well known that cancer cells acquire energy through metabolic reprogramming to exhibit various biological behaviors. Moreover, numerous studies have demonstrated that m6A induces cancer metabolic reprogramming by regulating the expression of core metabolic genes or by activating metabolic signaling pathways.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China.
Background: Prostate cancer (PCa) is a multifactorial and heterogeneous disease, ranking among the most prevalent malignancies in men. In 2020, there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all malignant tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!