In recent years, a special focus is placed on the usage of reactive matrices for analytical matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Since 2003, when the term "reactive matrices" was suggested and the dignity of compounds, possessing dualistic properties as matrices and derivatization agents was demonstrated, corresponding approach has found application in various fields and, in particular, in bioanalysis (metabolomics, lipidomics, etc.). The main advantage of this methodology is that it reduces sample treatment time, simplifies the procedure of sample handling, improves the sensitivity of analysis, enhances the molecular identification and profiling. Within the framework of this review, the main attention is paid to "true" reactive matrices that interact with analyte molecules through an exchange or addition reactions. A special section discusses practical application of reactive matrices in the determination of the distribution of targeted and non-targeted organic substances on the surface of biological tissue sections by MALDI-MS imaging. In this critical review, a controversial proposal is made to consider protonating and deprotonating matrices as reactive, because they can undergo a chemical reaction such as proton transfer that occurs in both target solution and MALDI plume. In this respect, special attention is paid to "proton sponge" matrices that have found a wide application in the analysis of various acidic compounds by MALDI-MS in the negative mode. Historical data on the formation of ions and the fate of matrices in MALDI are considered at the beginning of this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408347.2021.2001309 | DOI Listing |
Life Sci
January 2025
School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China. Electronic address:
Aflatoxin B1 (AFB1) is a prevalent contaminant in food and feed matrices, known for its hepatotoxic effects. Its metabolic breakdown generates reactive oxygen species (ROS), leading to oxidative stress and subsequent liver damage. Mitigating oxidative stress is, therefore, essential for ameliorating the hepatocellular damage and systemic toxicity caused by AFB1.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
Visually appealing foods are often associated by consumers with subjective quality features, such as freshness, palatability, and shelf life. In the past, there have been repeated violations in which regulations on the use of pigments in food were ignored and/or unauthorized or toxic dyes (e.g.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic.
The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744, South Korea. Electronic address:
The presence of PFAS in water matrices has become a global environmental issue in the last half-century. Dielectric barrier discharge (DBD) and electrooxidation (EO) showed potential for PFAS degradation but have yet to find practical application due to relatively high energy consumption. In this study, a hybrid DBD-EO system for efficient degradation of PFAS was developed by involving more reactive oxygen, sulfate radicals (SO) and nitrogen species (RONS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!