To improve glycemic control managed through insulin administration, recent studies have focused on developing hand-held point-of-care testing (POCT) electrochemical biosensors for insulin measurement. Amongst them, anti-insulin IgG-based sensors show promise in detecting insulin with high specificity and sensitivity. However, fabrication of electrochemical sensors with IgG antibodies can prove challenging because of their larger molecular size. To overcome these limitations, this study focuses on utilizing the anti-insulin single chain variable fragment (scFv) as a biosensing molecule with single-frequency faradaic electrochemical impedance spectroscopy (EIS). By comparing two different immobilization methods, covalent conjugation via succinimidyl ester and non-covalent poly-histidine chelation, we demonstrated effective modification of the electrode surface with anti-insulin scFv, while retaining its specific recognition toward insulin. Sensor performance was confirmed via the concentration-dependent faradaic electrochemical impedance change using potassium ferricyanide as a redox probe. The optimal frequency for measurement was determined to be the peak slope of the calculated impedance correlation with respect to frequency. Based on the identified optimized frequency, we performed single-frequency measurement of insulin within a concentration range of 10 pM-100 nM. This study can aid in developing a future point-of-care sensor which rapidly and sensitively measures insulin across a dynamic range of physiological concentrations, with label-free detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113901DOI Listing

Publication Analysis

Top Keywords

faradaic electrochemical
12
electrochemical impedance
12
insulin sensor
8
anti-insulin single
8
single chain
8
chain variable
8
variable fragment
8
impedance spectroscopy
8
frequency measurement
8
insulin
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!