Several studies have focused on the presence and distribution of microplastics within the water column of coastal waters, but the dynamics of these particles in sediments have received little attention. Here we examine the concentrations and characteristics of microplastics in sediment samples collected from 35 stations within the Inner Sea of Chiloé, Chilean Patagonia. Current velocity, grain size, intensity of salmon farming activities, and human population density were all evaluated as factors potentially explaining concentrations and distribution of microplastic particles within these sediments. Microplastics were detected in all samples, with the highest abundance represented by fibers (88%), fragments (10%) and films (2%). Across the sampled sites, microplastic concentrations averaged 72.2 ± 32.4 (SD) items per kg dw (dry weight) sediment, with the principal polymers identified as polyethylene terephthalate (PET), acrylic, polypropylene (PP) and polyurethane (PUR). Approximately 40% of the variability in distribution and abundance of microplastics was explained by current velocity combined with proximity and intensity of local salmon production activities. SYNOPSIS: Marine currents and aquaculture intensity explain abundance and dynamics of microplastics in marine sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152506 | DOI Listing |
Mar Pollut Bull
January 2025
Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:
Persistent microplastics (MPs) accumulation in the aqueous environments is considered a threat to the ecosystem, potentially harming aquatic species and human health. In view of the escalating problem of MPs pollution in India, a comprehensive investigation of MPs accumulation in major riverine systems is necessary. The current study aims to estimate MPs abundance in surface water, sediment, and fish samples along the entire stretch of Godavari, the largest river in peninsular India.
View Article and Find Full Text PDFEnviron Res
January 2025
Southern California Coastal Water Research Project, Costa Mesa, CA, 92626.
The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and in the benthic sediment during the wet and dry season in the coastal waters of the San Pedro Shelf, Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India; Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.
This research investigated the relationship between microplastic accumulation and the sediment texture in seagrass meadows across the selected coastal regions of Tuticorin. Sixteen sediment samples were collected by SCUBA divers utilizing a stainless steel grab sampler. Findings indicate significantly elevated microplastic concentrations in seagrass sediments when compared to unvegetated areas.
View Article and Find Full Text PDFWater Res
January 2025
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany.
Microplastics (MP), plastic particles <5 mm, are of global concern due to their worldwide distribution and potential repercussions on ecosystems and human well-being. In this study, MP were collected from the urbanized Susurluk basin in Türkiye to evaluate their vector function for bacterial biofilms, both in the wet and dry seasons. Bacterial biofilms were predominantly found on polyethylene (PE), polypropylene (PP), and polystyrene (PS), which constitute the most common MP types in the region.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Discipline of Chemistry, The University of Newcastle, University Drive, Newcastle, New South Whales 2308, Australia; School of Chemistry, Monash University, Wellington Road, Melbourne, Victoria 3800, Australia. Electronic address:
Microplastics are ubiquitous and appear to be harmful, however, the full extent to which these inflict harm has not been fully elucidated. Analysing environmental sample data is challenging, as the complexity in real data makes both automated and manual analysis either unreliable or time-consuming. To address challenges, we explored a dense feed-forward neural network (DNN) for classifying Fourier transform infrared (FTIR) spectroscopic data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!