Multilayer dextran derivative based capsules fighting bacteria resistant to Antibiotic: Case of Kanamycin-Resistant Escherichia coli.

Int J Biol Macromol

Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France. Electronic address:

Published: March 2022

Bacteria resistance to antibiotics has emerged as a major health problem. Developing new antibacterial systems is then of major interest. In this sense, we present biocapsules presenting inherent antibacterial capacity. The self-assembly of charged biopolymer, namely diethylaminoethyl-dextran hydrochloride (dex) and dextran sulfate (dex), were done on calcium carbonate microparticles, used as a template. Zeta potential measurements have shown the successful alternate adsorption of these biopolymers and related charge reversal upon the multilayer film construction onto the particles surface. The shape of the capsules was characterized by scanning electron microscopy (SEM). These particles were tested against bacteria resistant to antibiotics, namely kanamycin-resistant Escherichia coli. An inhibitory effect of the particles was observed during bacterial growth in liquid medium, i.e. in the range of 10 % for (dex/dex) coated CaCO materials and of 50% for (dex/dex) capsules. These findings evidence the high potential of capsules to act as antimicrobial agents in future and in treatments against infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.12.123DOI Listing

Publication Analysis

Top Keywords

bacteria resistant
8
kanamycin-resistant escherichia
8
escherichia coli
8
multilayer dextran
4
dextran derivative
4
derivative based
4
capsules
4
based capsules
4
capsules fighting
4
fighting bacteria
4

Similar Publications

Purpose: Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14.

View Article and Find Full Text PDF

Oncolytic measles virus-induced cell killing in radio-resistant and drug-resistant nasopharyngeal carcinoma.

Malays J Pathol

December 2024

Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.

Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.

View Article and Find Full Text PDF

Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.

Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.

View Article and Find Full Text PDF

Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.

View Article and Find Full Text PDF

Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic pathogen that poses a serious threat to veterinary and public health worldwide. We investigated mastitis milk samples for contamination with MRSA and also characterized the MRSA isolates by investigating antimicrobial resistance and virulence factors.

Result: We confirmed MRSA in 69 of 201 (34.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!