Ulcerative colitis (UC) is a major inflammatory disease worldwide. We previously demonstrated that licorice residue flavones (LFs) showed satisfactory efficacy in the treatment of UC. Therefore, research into the ingredients of LFs may lead to the discovery of novel anti-UC targets. In the current study, we separated licoflavone B (LB) from LFs and administered it to dextran sodium sulfate (DSS)-exposed C57BL/6 mice for 14 days. Our results demonstrated that high dose LB (120 mg/kg) significantly prevented DSS-induced weight loss, disease activity index (DAI) increase, histological damage, and colonic inflammation, indicating that LB has ameliorative effects on UC. We also investigated the composition of the intestinal barrier and microflora in an attempt to explore the mechanisms of LB against UC. As a result, we found that LB preserved the integrity of the colonic barrier by inhibiting colonic cell apoptosis and protecting the expression of occludin, claudin-1, and ZO-1. Moreover, LB reshaped the microflora composition by suppressing harmful bacteria (Enterococcus et al.) and boosting beneficial microorganisms (Bacteroides et al.). Further molecular exploration implied that LB exerted anti-UC activity through blocking the MAPK pathway. Here, we explored anti-UC activity of LB for the first time and clarified its mechanisms. These results will provide valuable clues for the discovery of novel anti-UC agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2021.174730DOI Listing

Publication Analysis

Top Keywords

licorice residue
8
dextran sodium
8
ulcerative colitis
8
discovery novel
8
novel anti-uc
8
anti-uc activity
8
licoflavone isoprene
4
isoprene flavonoid
4
flavonoid derived
4
derived licorice
4

Similar Publications

The specific extraction of glabridin from licorice residues using molecular imprinting technique.

Food Chem

April 2025

School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China. Electronic address:

The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin.

View Article and Find Full Text PDF

Cryptococcus neoformans causes cryptococcal meningitis, which is lethal to immune-compromised people, especially AIDS patients. This study employed diverse in silico techniques to find the best phytochemical to block farnesyltransferase (FTase). Based on molecular docking, the top two compounds selected from a screening of 5807 phytochemical compounds from 29 medicinal plants were CID_8299 (hydroxyacetone) and CID_71346280 (1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one), with docking scores of -5.

View Article and Find Full Text PDF

Isoliquiritigenin Exhibits Anti-Inflammatory Responses in Acute Lung Injury by Covalently Binding to the Myeloid Differentiation Protein-2 Domain.

Phytother Res

December 2024

Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China.

Acute lung injury (ALI), a systemic inflammatory response with high morbidity, lacks effective pharmacological therapies. Myeloid differentiation protein-2 (MD2) has emerged as a promising therapeutic target for ALI. Herein, we aimed to evaluate the ability of isoliquiritigenin (ISL), a natural flavonoid found in licorice as a novel MD2 inhibitor, to inhibit lipopolysaccharide (LPS)-induced ALI.

View Article and Find Full Text PDF

The Chinese medicine residue (CMR) is composed of wet woody waste, including licorice and ephedra, so using hydrothermal carbonization (HTC) to recover renewable energy from the CMR is a suitable treatment method. An in-depth analysis of the physicochemical properties and structural evolution mechanism of hydrochars is helpful in fundamentally promoting the energy utilization of traditional Chinese medicine waste residue. Therefore, this study analyzed the physicochemical properties and morphological structure of hydrochar produced under varying HTC conditions using multiple testing methods.

View Article and Find Full Text PDF

The Chinese medicine residue (CMR) is composed of wet substances, so using hydrothermal carbonization (HTC) to recover renewable energy from the residue is a suitable treatment method. Chromium (Cr), a kind of heavy metal element, is enriched in hydrochar and severely restricts its effective utilization. An in-depth analysis of the migration path and mechanism of Cr in hydrochar is helpful in promoting energy utilization for CMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!