Combinatorial Epigenetic and Immunotherapy in Breast Cancer Management: A Literature Review.

Epigenomes

Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan.

Published: December 2020

AI Article Synopsis

  • Breast cancer is a leading cause of cancer-related deaths globally, with existing therapies needing improvement due to the presence of immunosuppressive cells that hinder effective treatment.
  • The advent of immunotherapy offers potential advancements in breast cancer management, especially through combinatorial therapies that involve immune checkpoint blockade and targeting epigenetic regulators.
  • The review highlights ongoing clinical trials assessing the use of epi-drugs in conjunction with immunotherapy for breast cancer, focusing on their effects within the tumor microenvironment and findings from recent research.

Article Abstract

Breast cancer is one of the leading causes of death among cancer patients worldwide. To date, there are several drugs that have been developed for breast cancer therapy. In the 21st century, immunotherapy is considered a pioneering method for improving the management of malignancies; however, breast cancer is an exception. According to the immunoediting model, many immunosuppressive cells contribute to immunological quiescence. Therefore, there is an urgent need to enhance the therapeutic efficacy of breast cancer treatments. In the last few years, numerous combinatorial therapies involving immune checkpoint blockade have been demonstrated that effectively improve clinical outcomes in breast cancer and combining these with methods of targeting epigenetic regulators is also an innovative strategy. Nevertheless, few studies have discussed the benefits of epi-drugs in non-cancerous cells. In this review, we give a brief overview of ongoing clinical trials involving combinatorial immunotherapy with epi-drugs in breast cancer and discuss the role of epi-drugs in the tumor microenvironment, including the results of recent research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594694PMC
http://dx.doi.org/10.3390/epigenomes4040027DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
cancer
8
breast
7
combinatorial epigenetic
4
epigenetic immunotherapy
4
immunotherapy breast
4
cancer management
4
management literature
4
literature review
4
review breast
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!