This research has developed a method for rapid detection of SARS-CoV-2 N protein on a paper-based microfluidic chip. The chitosan-glutaraldehyde cross-linking method is used to fix the coated antibody, and the sandwich enzyme-linked immunosorbent method is used to achieve the specific detection of the target antigen. The system studied the influence of coating antibody concentration and enzyme-labeled antibody concentration on target antigen detection. According to the average gray value measured under different N protein concentrations, the standard curve of the method was established and the sensitivity was tested, and its linear regression was obtained. The equation is y = 9.8286x+137.6, R2 = 0.9772 > 0.90, which shows a high degree of fit. When the concentration of coating antibody and enzyme-labeled antibody were 1 μg/mL and 2 μg/mL, P > 0.05, the difference was not statistically significant, so the lower concentration of 1 μg/mL was chosen as the coating antibody concentration. The results show that the minimum concentration of N protein that can be detected by this method is 8 μg/mL, and the minimum concentration of coating antibody and enzyme-labeled antibody is 1 μg/mL, which has the characteristics of high sensitivity and good repeatability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805904PMC
http://dx.doi.org/10.1080/21655979.2021.2014385DOI Listing

Publication Analysis

Top Keywords

coating antibody
16
antibody concentration
12
enzyme-labeled antibody
12
paper-based microfluidic
8
microfluidic chip
8
rapid detection
8
antibody
8
target antigen
8
concentration coating
8
antibody enzyme-labeled
8

Similar Publications

Recognizing the need for innovative therapeutic approaches in the management of autoimmune diseases , our current investigation explores the potential of autologous extracellular vesicles (EVs), derived from blood of rheumatoid arthritis (RA) patients, to serve as therapeutic vectors to improve drug delivery. We found that circulating EVs derived from arthritic mice (Collagen-induced arthritis model) express the joint/synovia homing receptor, αVβ3 integrin. Importantly, both autologous labelled EVs, derived from blood of arthritic mice (Collagen antibody-induced arthritis model) and healthy mice-derived EVs, exhibit targeted migration toward inflamed synovia without infiltrating healthy joints, as demonstrated by an in-vivo imaging system.

View Article and Find Full Text PDF

Smartphone-based mobile digital pressure sensor for quantitative point-of-care testing of respiratory syncytial virus infection.

Talanta

January 2025

Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China; Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China. Electronic address:

Respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in infants and elderly individuals, leading to hospitalisation and potentially fatal outcomes, posing a serious threat to global health and economy. This study proposes a smartphone-based mobile digital pressure sensor (smartphone-MDPS) for the quantitative detection of the RSV fusion protein (RSV-F) in clinical nasopharyngeal samples. The smartphone-MDPS utilized two monoclonal antibodies (mAbs) specific to the F protein, of which mAb1 was conjugated with Au@PtNPs (Au@PtNPs-mAb1) as the detection antibody and mAb2 was coupled with magnetic beads (MB-mAb2) as a coating antibody to establish a novel sandwich immunoassay.

View Article and Find Full Text PDF

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

IgA, the primary human antibody secreted from the gut mucosa, shapes the intestinal microbiota. Methodological limitations have hindered defining which microbial strains are targeted by IgA and the implications of binding. Here we develop a technique, metagenomic immunoglobulin sequencing (MIg-seq), that provides strain-level resolution of microbes coated by IgA and use it to determine IgA coating levels for 3,520 gut microbiome strains in healthy human faeces.

View Article and Find Full Text PDF

In this work, we present the synthesis and application of fluorescent rhodamine B hydrazide for the derivatization of simple oligosaccharides and complex glycans using a hydrazone formation chemistry approach. The labeling conditions and the experimental setup of CE/LIF were optimized by analyzing oligosaccharide standards. The CE/LIF separations were performed in polybrene-coated capillaries eliminating the need for the purification step after derivatization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!