Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interconnected pathways in 3D bioartificial organs are essential to retaining cell activity in thick functional 3D tissues. 3D bioprinting methods have been widely explored in biofabrication of functionally patterned tissues; however, these methods are costly and confined to thin tissue layers due to poor control of low-viscosity bioinks. Here, cell-laden hydrogels that could be precisely patterned via water-soluble gelatin templates are constructed by economical extrusion 3D printed plastic templates. Tortuous co-continuous plastic networks, designed based on triply periodic minimal surfaces (TPMS), serve as a sacrificial pattern to shape the secondary sacrificial gelatin templates. These templates are eventually used to form cell-encapsulated gelatin methacryloyl (GelMA) hydrogel scaffolds patterned with the complex interconnected pathways. The proposed fabrication process is compatible with photo-crosslinkable hydrogels wherein prepolymer casting enables incorporation of high cell populations with high viability. The cell-laden hydrogel constructs are characterized by robust mechanical behavior. In vivo studies demonstrate a superior cell ingrowth into the highly permeable constructs compared to the bulk hydrogels. Perfusable complex interconnected networks within cell-encapsulated hydrogels may assist in engineering thick and functional tissue constructs through the permeable internal channels for efficient cellular activities in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986588 | PMC |
http://dx.doi.org/10.1002/adhm.202102123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!