Multiple genes in sugarcane control sucrose accumulation and the biosynthesis of cell wall components; however, it is unclear how these genes are expressed in its apical culms. To better understand this process, we sequenced mRNA from +1 stem internodes collected from four genotypes with different concentrations of soluble solids. Culms were collected at four different time points, ranging from six to 12-month-old plants. Here we show differentially expressed genes related to sucrose metabolism and cell wall biosynthesis, including genes encoding invertases, sucrose synthase and cellulose synthase. Our results showed increased expression of invertases in IN84-58, the genotype with lower sugar and higher fiber content, as well as delayed expression of secondary cell wall-related cellulose synthase for the other genotypes. Interestingly, genes involved with hormone metabolism were differentially expressed across time points in the three genotypes with higher soluble solids content. A similar result was observed for genes controlling maturation and transition to reproductive stages, possibly a result of selection against flowering in sugarcane breeding programs. These results indicate that carbon partitioning in apical culms of contrasting genotypes is mainly associated with differential cell wall biosynthesis, and may include early modifications for subsequent sucrose accumulation. Co-expression network analysis identified transcription factors related to growth and development, showing a probable time shift for carbon partitioning occurred in 10-month-old plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710541 | PMC |
http://dx.doi.org/10.3389/fpls.2021.736797 | DOI Listing |
World J Microbiol Biotechnol
December 2024
School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France.
Assembling and remodelling the cell wall is essential for plant development. Cell wall dynamics is controlled by cell wall proteins, polysaccharide biosynthesis, and a variety of sensor and receptor systems. LecRK-I.
View Article and Find Full Text PDFPLoS Genet
December 2024
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Enhancing the protein content and production efficiency of is crucial as an alternative protein source. This study screened nongenetically modified yeast strains with high protein content for food ingredient production and explored the underlying mechanisms. Yeast protein levels were found to correlate with RNA, leading to a high-throughput screening method using RNA fluorescence and flow cytometry.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Biotechnology Department, University of Verona, Verona, Italy.
Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!