Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

Front Neurol

Analytical Chemistry and Neurochemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.

Published: December 2021

AI Article Synopsis

  • Both heat stroke and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) involve disrupted homeostasis and share inflammatory pathways contributing to their symptoms.
  • Mechanisms such as vasoconstriction, gut permeability issues, inflammatory responses, and mitochondrial dysfunction are present in both conditions, with some gene expressions showing similar alterations.
  • Understanding these overlaps may lead to new treatments for ME/CFS as research into heat stroke therapies progresses and highlights common physiological responses to different stressors.

Article Abstract

We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS. Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences - and despite heat stroke being an acute condition - the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710546PMC
http://dx.doi.org/10.3389/fneur.2021.789784DOI Listing

Publication Analysis

Top Keywords

heat stroke
40
stroke me/cfs
12
stroke
10
heat
9
me/cfs
9
myalgic encephalomyelitis/chronic
8
encephalomyelitis/chronic fatigue
8
fatigue syndrome
8
stroke provide
8
lessons heat
4

Similar Publications

Background: The roles of the Pink1/Parkin pathway and mitophagy in lung injury during heat stroke remain unclear. In this study, we investigated the role of Pink1/Parkin-mediated mitophagy in acute lung injury (ALI) in rats with exertional heat stroke (EHS).

Methods: Sixty Sprague Dawley rats were randomly divided into control (CON), control + Parkin overexpression (CON + Parkin), EHS, and EHS + Parkin overexpression (EHS + Parkin) groups.

View Article and Find Full Text PDF

The Role of Key Molecules of Pyroptosis in Liver Damage of Rats With Exertional Heat Stroke.

Gastroenterol Res Pract

January 2025

Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.

This study is aimed at investigating the role of key molecular elements involved in pyroptosis in liver injury caused by exertional heat stroke (EHS). We established a model of EHS-induced liver injury in Sprague-Dawley rats, with a control group (receiving no treatment) for comparison and 12 rats in each group. Alanine transaminase (ALT) and aspartate transaminase (AST) levels in the blood were detected.

View Article and Find Full Text PDF

Heat stroke (HS) represents a life‑endangering condition that is due to an imbalance between heat generation and dissipation, owing to exposure to hot environments or strenuous exercise. HS is a medical condition that is gaining increased prevalence throughout the world due to a steady rise in temperature, and massive mortalities have been recorded among vulnerable populations. In 2024, extreme heat waves led to increased cases of HS and related fatalities globally, particularly in Karachi, Pakistan.

View Article and Find Full Text PDF

Heat Stroke Warning System Prototype for Athletes: A Pilot Study.

Sensors (Basel)

January 2025

Department of Sports Science and Sports Development, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand.

This research has developed a heat stroke warning system prototype for athletes utilizing the following sensors: DHT22, GY-906-BAA MLX90614, MAX30102. The device calculates the heat stroke risk and notifies users. The data is recorded, stored, displayed on a free-access website which graphs body temperature, ambient temperature, humidity, heart rate and heat stroke risk, and provides notifications for athletes engaged in outdoor activities.

View Article and Find Full Text PDF

In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!