Purpose Of Review: The ability of endothelial cells to sense mechanical force, and shear stress in particular, is crucial for normal vascular function. This relies on an intact endothelial glycocalyx that facilitates the production of nitric oxide (NO). An emerging arterial shear stress sensor is the epithelial Na+ channel (ENaC). This review highlights existing and new evidence for the interdependent activity of the glycocalyx and ENaC and its implications for vascular function.

Recent Findings: New evidence suggests that the glycocalyx and ENaC are physically connected and that this is important for shear stress sensing. The connection relies on N-glycans attached to glycosylated asparagines of α-ENaC. Removal of specific N-glycans reduced ENaC's shear stress response. Similar effects were observed following degradation of the glycocalyx. Endothelial specific viral transduction of α-ENaC increased blood pressure (∼40 mmHg). This increase was attenuated in animals transduced with an α-ENaC version lacking N-glycans.

Summary: These observations indicate that ENaC is connected to the glycocalyx and their activity is interdependent to facilitate arterial shear stress sensation. Future research focusing on how N-glycans mediate this interaction can provide new insights for the understanding of vascular function in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNH.0000000000000779DOI Listing

Publication Analysis

Top Keywords

shear stress
24
arterial shear
12
epithelial na+
8
na+ channel
8
stress sensing
8
vascular function
8
glycocalyx enac
8
glycocalyx
6
shear
6
stress
6

Similar Publications

Shear Strength of Adhesives Based on Solvent Type, Aged, and LED-cured with Different Wavelengths: An Study.

J Contemp Dent Pract

September 2024

Department of Academic, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru, ORCID: https://orcid.org/0000-0002-0594-5834.

Objective: To evaluate the shear strength of adhesives based on the type of solvent (ethanol and acetone), aged and light-cured using light-emitting diode (LED) units with different wavelengths. Polywave and monowave LED units were employed for this study.

Materials And Methods: Ninety bovine tooth samples were analyzed using OptiBond Universal adhesive (acetone) and single bond universal adhesive (ethanol).

View Article and Find Full Text PDF

Aim: This study evaluates long-term shear bond strength (SBS) and enamel micro cracks (MCs) healing after using adhesive pre-coated brackets (APC).

Materials And Methods: A total of eighty extracted human premolar teeth were randomly divided into four experimental groups ( = 20 per group): Control group: Teeth underwent indentation but no bracket bonding; group II : Teeth were subjected to indentation without exposure to thermocycling; group III: Teeth experienced both indentation and thermocycling; group IV: No indentation was applied to the teeth; groups III and IV were further divided into two subgroups to simulate different clinical timelines: Subgroup A (n = 10): Teeth underwent 5,000 thermocycles, equivalent to six months of clinical use. Subgroup B (n = 10): Teeth were subjected to 10,000 thermocycles, representing 12 months of use.

View Article and Find Full Text PDF

Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS).

View Article and Find Full Text PDF

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.

View Article and Find Full Text PDF

Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!