We have designed and demonstrated a quantum cascade laser (QCL) based standoff system that utilizes an uncooled mercury cadmium telluride (MCT) detector with lock-in signal processing for chemical identification at a distance of 12.5 meters in indoor ambient light conditions. In the system, a tunable quad-QCL operating (1 MHz) in quasi-continuous wave mode between 8.45 and 10.03 μm (∼1182 to 1000 cm) serves as the active mid-infrared source for remotely interrogating mineral, powder, and thin film oil samples including powder mixtures (6, 12.5, 25, and 50%) of crystalline quartz (SiO) in KBr. Light as reflected from a given sample is collected using a 10-inch (25.4 cm) Dall Kirkham telescope and coupled with ZnSe optics to an uncooled MCT detector. The mixture dependence of the highly transparent KBr and strongly absorbing quartz was found to fit a modified version of the Schatz reflectance model for compacted powder mixtures. All reflectance spectra reported are relative to an Au-coated diffuse reflector. A NIST traceable polystyrene standard reflector was also used to determine the QCL wavelength tuning range and calibration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00037028211060389 | DOI Listing |
Nanomaterials (Basel)
December 2024
Institute of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Architecture and Civil Engineering, TU Dortmund University, 44227 Dortmund, Germany.
Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental-statistical modeling techniques, the combined effect of brick powder, recycling sand, and alkaline activator on fresh and hardened properties of self-compacting concrete for the production of textile-reinforced concrete was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!