It has been proposed that a form of cortical reorganization (changes in functional connectivity between brain areas) can be assessed with resting-state (rs) functional MRI (fMRI). Here, we report a longitudinal data set collected from 19 patients with subcortical stroke and 11 controls. Patients were imaged up to five times over 1 year. We found no evidence, using rs-fMRI, for longitudinal poststroke cortical connectivity changes despite substantial behavioral recovery. These results could be construed as questioning the value of resting-state imaging. Here, we argue instead that they are consistent with other emerging reasons to challenge the idea of motor-recovery-related cortical reorganization poststroke when conceived of as changes in connectivity between cortical areas. We investigated longitudinal changes in functional connectivity after stroke. Despite substantial motor recovery, we found no differences in functional connectivity patterns between patients and controls, nor any changes over time. Assuming that rs-fMRI is an adequate method to capture connectivity changes between cortical regions after brain injury, these results provide reason to doubt that changes in cortico-cortical connectivity are the relevant mechanism for promoting motor recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896990 | PMC |
http://dx.doi.org/10.1152/jn.00148.2021 | DOI Listing |
Neuroradiology
January 2025
Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Quanshan District, Xuzhou, 221006, Jiangsu, China.
Introduction: Residual dizziness (RD) is common in patients with benign paroxysmal positional vertigo (BPPV) after successful canalith repositioning procedures. This study aimed to investigate the therapeutic effects of vestibular rehabilitation (VR) on BPPV patients experiencing RD, and to explore the impact of VR on functional connectivity (FC), specifically focusing on the bilateral parietal operculum (OP) cortex.
Methods: Seventy patients with RD were randomly assigned to either a four-week VR group or a control group that received no treatment.
J Org Chem
January 2025
Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.
View Article and Find Full Text PDFEpilepsia Open
January 2025
Division of Pediatric Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Objectives: Pediatric status epilepticus (SE) carries a high risk of morbidity and mortality and can result in neurologic injury. Establishing seizure activity on conventional EEG (cEEG) is essential but can delay treatment of seizures due to technician limitations. Rapid response EEG (rrEEG) device Ceribell and its Brain Stethoscope function can be used and interpreted rapidly by bedside providers with minimal training.
View Article and Find Full Text PDFBiophys J
January 2025
Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:
Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.
View Article and Find Full Text PDFActa Ophthalmol
January 2025
School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
Purpose: Previous animal studies have found a relationship between spatial frequency and myopia. New research in humans suggest that reduced high spatial content of the visual environment may be a contributing factor for myopia development. This study aims to review the literature and elucidate the potential biological mechanisms linking spatial frequency and myopia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!