The outbreak of COVID-19 caused by SARS-coronavirus (CoV)-2 has made millions of deaths since 2019. Although a variety of computational methods have been proposed to repurpose drugs for treating SARS-CoV-2 infections, it is still a challenging task for new viruses, as there are no verified virus-drug associations (VDAs) between them and existing drugs. To efficiently solve the cold-start problem posed by new viruses, a novel constrained multi-view nonnegative matrix factorization (CMNMF) model is designed by jointly utilizing multiple sources of biological information. With the CMNMF model, the similarities of drugs and viruses can be preserved from their own perspectives when they are projected onto a unified latent feature space. Based on the CMNMF model, we propose a deep learning method, namely VDA-DLCMNMF, for repurposing drugs against new viruses. VDA-DLCMNMF first initializes the node representations of drugs and viruses with their corresponding latent feature vectors to avoid a random initialization and then applies graph convolutional network to optimize their representations. Given an arbitrary drug, its probability of being associated with a new virus is computed according to their representations. To evaluate the performance of VDA-DLCMNMF, we have conducted a series of experiments on three VDA datasets created for SARS-CoV-2. Experimental results demonstrate that the promising prediction accuracy of VDA-DLCMNMF. Moreover, incorporating the CMNMF model into deep learning gains new insight into the drug repurposing for SARS-CoV-2, as the results of molecular docking experiments reveal that four antiviral drugs identified by VDA-DLCMNMF have the potential ability to treat SARS-CoV-2 infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbab526 | DOI Listing |
Biol Pharm Bull
January 2025
Department of Pharmacy, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan.
Using a large health insurance database in Japan, we examined the real-world usage of budesonide enteric-coated capsules (BUD) in treating Crohn's disease. We analyzed data from the Japan Medical Data Center claims database for Crohn's disease patients prescribed BUD from April 2016 to March 2021, focusing on prescription status, adverse events (AEs), monitoring tests, and concomitant medications over 2 years following BUD initiation. Patients were categorized into two groups based on BUD usage duration: ≤1 year and >1 year.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China. Electronic address:
Nucleoside analogs (NAs), as antiviral drugs, play a significant role in clinical medicine, constituting approximately 50 % of all antiviral therapies in current use. Nucleoside inhibitors function by mimicking the structure of natural nucleosides, integrating themselves into viral genetic material during replication, and subsequently inhibiting the virus's ability to reproduce. They are used to treat a variety of viral infections, including herpes simplex, hepatitis B, and acquired immunodeficiency syndrome (AIDS).
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Students' Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Introduction: Inflammation plays a role in coronavirus disease 2019 (COVID-19) pathophysiology and anti-inflammatory drugs may help reduce the disease severity. Levamisole is an anthelmintic drug with immunomodulatory and possible antiviral effects. This study aimed to evaluate the role of levamisole in the treatment of patients with COVID-19.
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:
The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!