An awareness-dependent mapping of saliency in the human visual system.

Neuroimage

Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, Guangdong 510631, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China. Electronic address:

Published: February 2022

The allocation of exogenously cued spatial attention is governed by a saliency map. Yet, how salience is mapped when multiple salient stimuli are present simultaneously, and how this mapping interacts with awareness remains unclear. These questions were addressed here using either visible or invisible displays presenting two foreground stimuli (whose bars were oriented differently from the bars in the otherwise uniform background): a high salience target and a distractor of varied, lesser salience. Interference, or not, by the distractor with the effective salience of the target served to index a graded or non-graded nature of salience mapping, respectively. The invisible and visible displays were empirically validated by a two-alternative forced choice test (detecting the quadrant of the target) demonstrating subjects' performance at or above chance level, respectively. By combining psychophysics, fMRI, and effective connectivity analysis, we found a graded distribution of salience with awareness, changing to a non-graded distribution without awareness. Crucially, we further revealed that the graded distribution was contingent upon feedback from the posterior intraparietal sulcus (pIPS, especially from the right pIPS), whereas the non-graded distribution was innate to V1. Together, this awareness-dependent mapping of saliency reconciles several previous, seemingly contradictory findings regarding the nature of the saliency map.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2021.118864DOI Listing

Publication Analysis

Top Keywords

awareness-dependent mapping
8
mapping saliency
8
saliency map
8
salience target
8
graded distribution
8
non-graded distribution
8
salience
6
saliency
4
saliency human
4
human visual
4

Similar Publications

An awareness-dependent mapping of saliency in the human visual system.

Neuroimage

February 2022

Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, Guangdong 510631, China; School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, Guangdong 510631, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China. Electronic address:

The allocation of exogenously cued spatial attention is governed by a saliency map. Yet, how salience is mapped when multiple salient stimuli are present simultaneously, and how this mapping interacts with awareness remains unclear. These questions were addressed here using either visible or invisible displays presenting two foreground stimuli (whose bars were oriented differently from the bars in the otherwise uniform background): a high salience target and a distractor of varied, lesser salience.

View Article and Find Full Text PDF

A source for awareness-dependent figure-ground segregation in human prefrontal cortex.

Proc Natl Acad Sci U S A

December 2020

Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, South China Normal University, 510631 Guangzhou, Guangdong, China;

Figure-ground modulation, i.e., the enhancement of neuronal responses evoked by the figure relative to the background, has three complementary components: edge modulation (boundary detection), center modulation (region filling), and background modulation (background suppression).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!