Salinity normalization of total alkalinity (TA) and dissolved inorganic carbon (DIC) data is commonly used to account for conservative mixing processes when inferring net metabolic modification of seawater by coral reefs. Salinity (S), TA, and DIC can be accurately and precisely measured, but salinity normalization of TA (nTA) and DIC (nDIC) can generate considerable and unrecognized uncertainties in coral reef metabolic rate estimates. While salinity normalization errors apply to nTA, nDIC, and other ions of interest in coral reefs, here, we focus on nTA due to its application as a proxy for net coral reef calcification and the importance for reefs to maintain calcium carbonate production under environmental change. We used global datasets of coral reef TA, S, and modeled groundwater discharge to assess the effect of different volumetric ratios of multiple freshwater TA inputs (i.e., groundwater, river, surface runoff, and precipitation) on nTA. Coral reef freshwater endmember TA ranged from -2 up to 3032 μmol/kg in hypothetical reef locations with freshwater inputs dominated by riverine, surface runoff, or precipitation mixing with groundwater. The upper bound of freshwater TA in these scenarios can result in an uncertainty in reef TA of up to 90 μmol/kg per unit S normalization if the freshwater endmember is erroneously assumed to have 0 μmol/kg alkalinity. The uncertainty associated with S normalization can, under some circumstances, even shift the interpretation of whether reefs are net calcifying to net dissolving, or vice versa. Moreover, the choice of reference salinity for normalization implicitly makes assumptions about whether biogeochemical processes occur before or after mixing between different water masses, which can add uncertainties of ±1.4% nTA per unit S normalization. Additional considerations in identifying potential freshwater sources of TA and their relative volumetric impact on seawater are required to reduce uncertainties associated with S normalization of coral reef carbonate chemistry data in some environments. However, at a minimum, researchers should minimize the range of salinities over which the normalization is applied, precisely measure salinity, and normalize TA values to a carefully selected reference salinity that takes local factors into account.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716060PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261210PLOS

Publication Analysis

Top Keywords

coral reef
24
salinity normalization
20
normalization
10
total alkalinity
8
coral
8
reef
8
coral reefs
8
freshwater inputs
8
surface runoff
8
runoff precipitation
8

Similar Publications

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure?

Water Res X

May 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.

View Article and Find Full Text PDF

Heat-tolerant subtropical Porites lutea may be better adapted to future climate change than tropical one in the South China Sea.

Sci Total Environ

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:

Coral reefs are degrading at an accelerating rate owing to climate change. Understanding the heat stress tolerance of corals is vital for their sustainability. However, this tolerance varies substantially geographically, and information regarding coral responses across latitudes is lacking.

View Article and Find Full Text PDF

Coastal eutrophication transforms shallow micro-benthic reef communities.

Sci Total Environ

January 2025

Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.

Article Synopsis
  • Coral reefs worldwide are suffering from coastal eutrophication, leading to decreased coral cover and increased harmful organisms like algae and invertebrates.
  • The study focuses on how micro-benthic communities, specifically foraminifera, diatoms, and bacteria, are influenced by turbidity associated with eutrophication in the Spermonde Archipelago, using environmental DNA analysis.
  • Findings indicate that shallower reef flat communities are much more affected by turbidity than deeper reef slope communities, with foraminifera and diatom ESVs serving as indicators of varying turbidity levels, thus highlighting the influence of local environmental conditions on these micro-benthic communities.
View Article and Find Full Text PDF

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!