Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tailored coupled cluster theory represents a computationally inexpensive way to describe static and dynamical electron correlation effects. In this work, we scrutinize the performance of various coupled cluster methods tailored by electronic wave functions of polynomial cost. Specifically, we focus on frozen-pair coupled cluster (fpCC) methods, which are tailored by pair-coupled cluster doubles (pCCD), and coupled cluster theory tailored by matrix product state wave functions optimized by the density matrix renormalization group (DMRG) algorithm. As test system, we selected a set of various small- and medium-sized molecules containing diatomics (N, F, C, CN, CO, BN, BO, and Cr) and molecules (ammonia, ethylene, cyclobutadiene, benzene, hydrogen chains, rings, and cuboids) for which the conventional single-reference coupled cluster singles and doubles (CCSD) method is not able to produce accurate results for spectroscopic constants, potential energy surfaces, and barrier heights. Most importantly, DMRG-tailored and pCCD-tailored approaches yield similar errors in spectroscopic constants and potential energy surfaces compared to accurate theoretical and/or experimental reference data. Although fpCC methods provide a reliable description for the dissociation pathway of molecules featuring single and quadruple bonds, they fail in the description of triple or hextuple bond-breaking processes or avoided crossing regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.1c00284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!