Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical biosensors support disease diagnostic applications, offering high accuracy and sensitivity due to label-free detection and their optical resonance enhancement. However, optical biosensors based on noble metal nanoparticles and precise micro-electromechanical system technology are costly, which is an obstacle for their applications. Here, we proposed a biosensor reuse method with nanoscale parylene C film, taking the silicon-on-insulator microring resonator biosensor as an example. Parylene C can efficiently adsorb antibody by one-step modification without any surface treatment, which simplifies the antibody modification process of sensors. Parylene C (20 nm thick) was successfully coated on the surface of the microring to modify anti-carcinoembryonic antigen (anti-CEA) and specifically detect CEA. After sensing, parylene C was successfully removed without damaging the sensing surface for the sensor reusing. The experimental results demonstrate that the sensing response did not change significantly after the sensor was reused more than five times, which verifies the repeatability and reliability of the reusable method by using parylene C. This framework can potentially reduce the cost of biosensors and promote their further applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c02914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!