Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: (African walnut) is an edible seed, widely cultivated for its ethnomedicinal and nutritional purposes. Consumption of African walnuts has been linked with blood sugar lowering effect.
Objective: The effects of seed oil treatment on hyperglycaemia and oxidative stress were investigated in plasma, liver and kidney of streptozotocin (STZ)-induced diabetic rats.
Materials And Methods: seed oil (PCO) was obtained by extraction of pulverized dried seed in n-hexane. Diabetes was induced by STZ injection (65 mg/kg, i.p). Rats were assigned into non-diabetic control (NC) and diabetic control (DC; treated with vehicle), PCO (200 mg/kg) and pioglitazone (10 mg/kg). Fasting blood sugar (FBS) was taken from overnight fasted animals on day 7 and 14, respectively. Plasma, liver and kidney samples were obtained on day 14 for the determination of oxidative stress parameters malondialdehyde (MDA), reduced glutathione (GSH), catalase and superoxide dismutase (SOD).
Results: PCO treatment significantly ( 0.05) reduced STZ-induced hyperglycaemia by lowering the elevated FBS. PCO significantly reduced MDA level and attenuated STZ-induced depletion of GSH, catalase and SOD in the diabetic rats' plasma, liver and kidneys.
Conclusions: These results suggest that consumption of seed might offer protection against diabetes-induced hepatic and renal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1354750X.2021.2024601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!