Background: Acute myeloid leukemia (AML) with KMT2A (MLL) rearrangement is known for monocytic or myelomonocytic differentiation, but the full immunophenotypic spectrum and dynamic changes of the immunophenotype in this genetically defined disease have not been systematically studied.
Methods: We reviewed the immunophenotype, karyotype, and mutations at the time of initial diagnosis and relapse of adults with AML with KMT2A rearrangement in our institution between 2007 and 2020.
Results: We identified 102 patients: 44 men and 58 women with a median age of 52 years (range, 18-87). Forty-three patients were considered to be therapy-related. Twenty-four out of 64 patients relapsed from complete remission after induction therapy, 34 had persistent/progressive disease, and 58 patients died with a median overall survival of 17 months. We detected five immunophenotypes: immature monocytic (38%); myelomonocytic (22%); myeloblastic (22%); mature monocytic (10%); and acute promyelocytic (APL)-like (8%). By chromosomal breakpoints, we presumed 11 different partners; t(9;11) (p22;q23)/MLLT3-KMT2A was the most common rearrangement (n = 56, 55%), followed by t(6;11) (q27;q23)/AFDN-KMT2A (n = 13,13%). Patients with t(6;11) (q27;q23)/AFDN-KMT2A preferentially showed a myeloblastic phenotype (p = 0.026). Mutations were detected in 39/64 (61%) cases, and RAS pathway (NRAS/KRAS/PTPN11) was involved in 26/64 (41%) cases. None of the APL-like cases had mutations detected. At the time of disease relapse, 10/24 (42%) showed major immunophenotypic change, and 7/10 cases gained additional cytogenetic and/or molecular alterations.
Conclusion: The immunophenotype of AML with KMT2A rearrangement is more diverse than previously recognized, with a substantial subset showing no evidence of monocytic differentiation. Major immunophenotype change is common at the time of relapse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.b.22051 | DOI Listing |
Biomolecules
January 2025
Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada.
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India. Electronic address:
The prognosis for mixed-lineage leukemia (MLL), particularly in young children, remains a significant health concern due to the limited therapeutic options available. MLL refers to KMT2A chromosomal translocations that produce MLL fusion proteins. The protein menin, which is essential for the malignant potential of these MLL fusion proteins, offers novel targets for acute leukemia treatment.
View Article and Find Full Text PDFBlood
January 2025
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.
Stemness-associated cell states are linked to chemotherapy resistance in AML. We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .
Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.
Drug Resist Updat
January 2025
Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:
Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!