Angew Chem Int Ed Engl
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
Published: March 2022
Flexible perovskite solar cells (FPSCs) have attracted great attention due to their advantageous traits such as low cost, portability, light-weight, etc. However, mechanical stability is still the weak point in their practical application. Herein, we prepared efficient FPSCs with remarkable mechanical stability by a dynamic thermal self-healing effect, which can be realized by the usage of a supramolecular adhesive. The supramolecular adhesive, which was obtained by random copolymerization of acrylamide and n-butyl acrylate, is amphiphilic, has a proper glass transition temperature and a high density of hydrogen-bond donors and receptors, providing the possibility of thermal dynamic repair of mechanical damage in FPSCs. The adhesive also greatly improves the leveling property of the precursor solution on the hydrophobic poly[bis(4-phenyl)(2,4,6-trimethylphenyl)]amine (PTAA) surface. PSCs containing this adhesive achieve more than a 20 % power conversion efficiency (PCE) on flexible substrates and a 21.99 % PCE on rigid substrates (certified PCE of 21.27 %), with improved electron mobility and reduced defect concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202116602 | DOI Listing |
Heliyon
January 2025
Institute of Mathematics, Henan Academy of Sciences, Zhengzhou, 450046, China.
This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
Modulating the electronic properties of VSiN with high Curie temperature to realize an ideal half-metal is appealing towards spintronic applications. Here, by using first-principles calculations, we propose alloying the VSiN monolayer via substitutive doping of transition metal atoms (Sc-Ni, Y-Mo) at the V site. We find that the transition metal atom (except the Ni atom) doped VSiN systems have dynamical and thermal stability.
View Article and Find Full Text PDFSci Rep
January 2025
Engineering Research Center of Flexible Radiation Protection Technology, Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China.
The impact of light radiation, a predominant energy release mechanism in nuclear explosions, on material properties is of critical importance. This investigation employed an artificial light source to replicate the effects of nuclear explosion radiation and utilized a physical information neural network (PINN) to examine the temperature evolution and corresponding changes in the mechanical properties of carbon fiber/epoxy composites (CFEC). A light source simulating nuclear explosion's light radiation was built to irradiate the CFEC, then measure the reflection spectrum and temperature of samples.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi 154000, China.
Aims: The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA).
Methods And Results: Through fluorescence resonance energy transfer (FRET) screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/mL.
Int J Biol Macromol
January 2025
Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia. Electronic address:
UV-irradiation is a stress factor for proteins, leading to disruption of their native structure. Test systems based on UV-irradiated proteins are relevant for researchers, as they allow working directly with damaged protein molecules, which can be important when studying the properties and mechanisms of action of various antiaggregation agents. The study of UV-irradiated proteins can also have applied significance, including medical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.