Cardiac electrophysiology and cardiac mechanics both depend on the average cardiomyocyte long-axis orientation. In the realm of personalized medicine, knowledge of the patient-specific changes in cardiac microstructure plays a crucial role. Patient-specific computational modelling has emerged as a tool to better understand disease progression. In vivo cardiac diffusion tensor imaging (cDTI) is a vital tool to non-destructively measure the average cardiomyocyte long-axis orientation in the heart. However, cDTI suffers from long scan times, rendering volumetric, high-resolution acquisitions challenging. Consequently, interpolation techniques are needed to populate bio-mechanical models with patient-specific average cardiomyocyte long-axis orientations. In this work, we compare five interpolation techniques applied to in vivo and ex vivo porcine input data. We compare two tensor interpolation approaches, one rule-based approximation, and two data-driven, low-rank models. We demonstrate the advantage of tensor interpolation techniques, resulting in lower interpolation errors than do low-rank models and rule-based methods adapted to cDTI data. In an ex vivo comparison, we study the influence of three imaging parameters that can be traded off against acquisition time: in-plane resolution, signal to noise ratio, and number of acquired short-axis imaging slices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285076PMC
http://dx.doi.org/10.1002/nbm.4667DOI Listing

Publication Analysis

Top Keywords

average cardiomyocyte
12
cardiomyocyte long-axis
12
interpolation techniques
12
vivo vivo
8
vivo cardiac
8
cardiac diffusion
8
diffusion tensor
8
tensor imaging
8
long-axis orientation
8
tensor interpolation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!