In this paper, the effect of temperature, adsorption bed height, and initial mercury concentration under oxy-fuel combustion on mercury adsorption by 1% NHCl-modified biomass char was studied. Modification enriched the pore structure of biomass char and increased the number of surface functional groups. Higher temperature would lead to the destruction of van der Waals and reduce the adsorption efficiency, while the change of adsorption bed height had no obvious effect. Adsorption thermodynamics shows that the mercury removal process is a spontaneous exothermic process. The increase of initial mercury concentration would increase the driving force of mercury diffusion to the surface and improve the adsorption capacity. Meanwhile, three kinetic models including the intraparticle diffusion model, pseudo-first-order model, and pseudo-second-order model were applied to explore the internal mechanism of mercury adsorption by biomass char. The results showed that the pseudo-first-order model and pseudo-second-order model could accurately describe the adsorption process, which meant that the progress of external mass transfer played an important role in the adsorption of mercury while chemical adsorption should not be ignored. The intraparticle diffusion model indicated that internal diffusion was not the only step to control the entire adsorption process and did not have an inhibition on mercury removal. Higher initial mercury concentration would promote the external mass transfer progress and chemical adsorption progress. In addition, higher temperature inhibited the external mass transfer, which was not conducive to the adsorption of mercury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697621 | PMC |
http://dx.doi.org/10.1021/acsomega.1c06038 | DOI Listing |
Environ Pollut
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6-202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%-60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.
Waste Manag
December 2024
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:
J Hazard Mater
November 2024
Energy and Resources Institute, Charles Darwin University, Ellengowan Drive, Purple 12.01.08, Casuarina, NT 0810, Australia. Electronic address:
Contamination of chars with dioxin-like polychlorinated biphenyls (dl-PCB) significantly limits their use and hinders their deployment in the circular bioeconomy, specifically in applications that may lead to dietary exposure. Here, for the first time, we review the levels of contamination of chars produced from pyrolysis and hydrothermal carbonisation (HTC) with dl-PCB congeners. We conduct a detailed and critical examination of the role played by the processing parameters, such as temperature and residence time, and the reaction mechanisms, to detoxify the biomass under an oxygen-free atmosphere during its valorisation.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Biological Systems Engineering, Washington State University, Pullman, WA, 99163, USA. Electronic address:
Land application of dairy manure is the most common practice for disposal of this waste. Agricultural fields surrounding concentrated animal feeding operations (CAFOs) often have high levels of N and P because of manure over-application. However, its low bulk density limits the amount of manure that can be profitably transported for use as fuel or fertilizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!