Tuning of the emission within the near-infrared to visible range is observed in -toluenesulfonic acid-doped polyaniline light emitting diodes (PANI/PTSA), when water molecules are absorbed by the active material (wet PANI/PTSA). This is a hybrid material that combines a conjugated π-electron system and a proton system, both strongly interacting in close contact with each other. The proton system successfully competes with the electron system in excitation energy consumption (when electrically powered), thanks to the inductive resonance energy transfer from electrons to protons in wet PANI/PTSA at the energy levels of combination of vibrations and overtones in water, with subsequent light emission. Wet PANI/PTSA, in which electrons and protons can be excited parallelly owing to fast energy transfer, may emit light in different ranges (on a competitive basis). This results in intense light emission with a maximum at 750 nm (and the spectrum very similar to that of an excited protonic system in water), which is blue-shifted compared to the initial one at ∼850 nm that is generated by the PANI/PTSA dry sample, when electrically powered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697372 | PMC |
http://dx.doi.org/10.1021/acsomega.1c05051 | DOI Listing |
ACS Omega
December 2021
Faculty of Chemistry, Laboratory for Materials Physicochemistry and Nanotechnology, A. Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Tuning of the emission within the near-infrared to visible range is observed in -toluenesulfonic acid-doped polyaniline light emitting diodes (PANI/PTSA), when water molecules are absorbed by the active material (wet PANI/PTSA). This is a hybrid material that combines a conjugated π-electron system and a proton system, both strongly interacting in close contact with each other. The proton system successfully competes with the electron system in excitation energy consumption (when electrically powered), thanks to the inductive resonance energy transfer from electrons to protons in wet PANI/PTSA at the energy levels of combination of vibrations and overtones in water, with subsequent light emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!