Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the process of lignin extraction by the organic solvent method, the amount of alkali and the content of 1,4-butanediol are important conditions that affect lignin yield. The effects of alkali and alcohol contents on lignin recovery, removal rate, and structure were studied. In this reaction system, the removal rate of lignin increased with the increase of alkali content but decreased with the increase of alcohol content. Fourier transform infrared (FT-IR) analysis showed that the phenol hydroxyl group and the ether bond in lignin had different trends in different alkali and 1,4-butanediol environments, and four different infrared parameters in lignin had an obvious linear relationship. Gel permeation chromatography (GPC) results showed that high alkali content and high 1,4-butanediol content could lead to the fragmentation of lignin. In addition, lignin extracted from alkali-quantity factor series was selected to prepare activated carbon, CaCl was selected as the activator, and its effects were studied. Results showed that in the process of extracting lignin, on the one hand, NaOH content affects the functional groups of activated carbon by affecting the aromatic structure of lignin; on the other hand, the NaOH content affects the graphitization degree and specific surface area of activated carbon by affecting the removal rate and the molecular weight of lignin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697003 | PMC |
http://dx.doi.org/10.1021/acsomega.1c04318 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!