Investigation of nucleic acid damage induced by a novel ruthenium anti-cancer drug using multiple analytical techniques: Sequence specificity and damage kinetics.

Int J Biol Macromol

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt. Electronic address:

Published: February 2022

Cis-diacetonitrilo-bis(bipyridine) ruthenium(II) chloride is a recently introduced cis-platin analogue that has anti-cancer properties with lower side effects. However, the sequence dependence of its DNA damaging mechanism is unclear. Here, we present a simple, sensitive, multiplexed mix-and-read assay for ascertaining the molecular mechanism of DNA damage induced by the studied ruthenium complex (Ru-complex). The damage kinetics and sequence specificity for the Ru-complex induced DNA damage are examined by studying the induced damage in various oligonucleotide sequences by EvaGreen-DNA intercalator probe. High-through-put measurements were established using a 96-well microplate platform that allows multiple sequences to be measured simultaneously. The results show that the extent of damage increases with an increasing number of guanines, with considerable amount of damage at GA, GT and GC sites, in particular. Furthermore, the interaction of Ru-complex with DNA was confirmed using thermal analysis and MALDI-TOF-MS. Results indicate that the activated Ru-complex preferentially binds via both mono- and di-adduct formation at G and GG sites, respectively. Moreover, the developed method was successfully applied for the determination of the potency of the studied Ru-complex to induce DNA damage in K-Ras and N-Ras family of genes, one of the most common oncogenic events in cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.12.113DOI Listing

Publication Analysis

Top Keywords

dna damage
12
damage
9
damage induced
8
sequence specificity
8
damage kinetics
8
dna
5
ru-complex
5
investigation nucleic
4
nucleic acid
4
acid damage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!