In bears, reproduction is dependent on the body reserves accumulated during hyperphagia. The Cantabrian brown bear mainly feeds on nuts during the hyperphagia period. Understanding how landscape heterogeneity and vegetation productivity in human-dominated landscapes influence the feeding habits of bears may therefore be important for disentangling species-habitat relationships of conservation interest. We determined the spatial patterns of nut consumption by brown bears during the hyperphagia period in relation to landscape structure, characteristics of fruit-producing patches and vegetation productivity. For this purpose, we constructed foraging models based on nut consumption data (obtained by scat analysis), by combining vegetation productivity data, topographical variables and landscape metrics to identify nut foraging patterns during this critical period for bears. The average wooded area of patches where scats were collected and where the nuts that the bears had consumed were produced was larger than that of the corresponding patches where nuts were not produced. For scats collected outside of nut-producing patches, the distance between the scats and the patches was greatest for chestnut-producing patches. Elevation, Gross Primary Production (GPP) and the Aggregation Index (AI) were good predictors of acorn consumption in the models. Good model fits were not obtained for data on chestnut consumption in bears. The findings confirm that brown bears feeding on nuts show a preference for relatively large, highly aggregated patches with a high degree of diversity in the landscape pattern, which may help the bears to remain undetected. The nut prediction model highlights areas of particular importance for brown bears during hyperphagia. The human presence associated with sweet chestnut forest stands or orchards may make bears feel more vulnerable when feeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152610DOI Listing

Publication Analysis

Top Keywords

vegetation productivity
16
nut consumption
12
brown bears
12
bears
10
landscape structure
8
cantabrian brown
8
brown bear
8
hyperphagia period
8
bears hyperphagia
8
scats collected
8

Similar Publications

What Is Grazing Time? Insights from the Acoustic Signature of Goat Jaw Activity in Wooded Landscapes.

Sensors (Basel)

December 2024

Rangeland Service, Ministry of Agriculture and Food Security, P.O. Box 30, Rishon LeZion 5025001, Israel.

Acoustic monitoring facilitates the detailed study of herbivore grazing by generating a timeline of sound bursts associated with jaw movements (JMs) that perform bite or chew actions. The unclassified stream of JM events was used here in an observational study to explore the notion of "grazing time". Working with shepherded goat herds in a wooded landscape, a horn-based acoustic sensor with a vibration-type microphone was deployed on a volunteer animal along each of 12 foraging routes.

View Article and Find Full Text PDF

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

The Relative Contribution of Root Morphology and Arbuscular Mycorrhizal Fungal Colonization on Phosphorus Uptake in Rice/Soybean Intercropping Under Dry Cultivation.

Plants (Basel)

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Intercropping has the potential to improve phosphorus (P) uptake and crop growth, but the potential benefits and relative contributions of root morphology and arbuscular mycorrhizal fungi (AMF) colonization are largely unknown for the intercropping of rice and soybean under dry cultivation. Both field and pot experiments were conducted with dry-cultivated rice ( L.) and soybean ( L.

View Article and Find Full Text PDF

Assessment of vegetation restoration potential in central Asia.

J Environ Manage

January 2025

State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Vegetation restoration potential (VRP) assessment is an important aspect and foundation of ecological restoration projects. Neglecting the carrying capacity of the natural environment in the formulation and implementation of ecological restoration projects often leads to diminished effectiveness or even environmental damage. Existing models for VRP either overly rely on empirical knowledge, resulting in low efficiency and reproducibility, or fail to consider the nonlinear relationship between the natural environment and vegetation cover, leading to low accuracy in assessment results.

View Article and Find Full Text PDF

Fuel accumulation shapes post-fire fuel decomposition through soil heating effects on plants, fungi, and soil chemistry.

Sci Total Environ

January 2025

University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA; University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue Haworth Hall, Lawrence, KS 66045, USA.

Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!