At present, the improvement of nitrate and mixed heavy metals removal in wastewater by microorganism are urgently needed. Previous studies have shown that Pseudomonas hibiscicola strain L1 exhibited Ni(II) removal ability under aerobic denitrification. In this study, the characteristics of the free strain L1, peanut shell biochar (PBC) and further the co-system of strain L1 immobilized on PBC were investigated for the removal of Ni(II), Cr(VI), Cu(II) and nitrate in mix-wastewater. The results illustrated that strain L1 could remove 15.51% - 32.55% of Ni(II) (20-100 mg·L), and removal ratios by co-system were ranked as Ni(II) (81.17%) > Cu(II) (45.84%) > Cr(VI) (38.21%). Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) images indicated that the strain L1 immobilized well on PBC and had vigorous biological activity; the crystals of Ni(OH), Cu(OH) and CrO(OH) etc. were formed on surface of co-system with various functional groups participated in. In Sequential Batch Reactor (SBR), the pollutant removal ratios by co-system were higher than that by free strain L1. This study illustrated that the co-system of strain L1 immobilized on PBC was qualified to be applied for practical scenarios of effective heavy metal removal of electroplating mix-wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152635 | DOI Listing |
Food Sci Biotechnol
January 2025
Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India.
This review comprehensively examines the advancements in engineering thermostable phytase through genetic modification and immobilization techniques, focusing on developments from the last seven years. Genetic modifications, especially protein engineering, have enhanced enzyme's thermostability and functionality. Immobilization on various supports has further increased thermostability, with 50-60 % activity retention at higher temperature (more than 50 °C).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Department of Biology, Faculty of Science, Farhangian University, Tehran, Iran.
Background And Objectives: The study focused on the amylase enzyme, widely used in the industrial starch liquefaction process. We looked into the best way to immobilize the native strain , which is the only alpha-amylase-producing bacterium, by trapping it in calcium alginate gel. This is a promising way to increase enzyme output.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Bioprotection Aotearoa, School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand.
This chapter describes the protocol for heterologous expression of Phytophthora proteins in the yeast Pichia pastoris. Two methods to prepare the constructs for expression are described, using two different strains of P. pastoris, as well as methods for protein expression and purification by immobilized metal ion affinity (IMAC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!