Approximately equal amounts of 125I-mAb 225 (a monoclonal antibody recognizing the human epidermal growth factor receptor) and 125I-labeled epidermal growth factor (125I-EGF) were bound by HeLa cells. However, these two EGF receptor binding moieties had different fates after binding. Sixty percent of cell-associated 125I-EGF was internalized. The majority of internalized 125I was released from the cell within 2 hr. In contrast, whereas only 30% of bound 125I-mAb 225 was internalized by HeLa cells, the internalized radioactivity remained cell-associated. EGF and mAb 225 were used to construct ricin A-chain (RTA) conjugates. The two chimeric molecules, EGF-RTA and mAb 225-RTA, were equally toxic to human HeLa cells. EGF-RTA was also toxic to murine 3T3 cells. In contrast, mAb 225-RTA was not toxic to 3T3 cells, consistent with the human EGF-receptor specificity of mAb 225. Neither conjugate was cytotoxic to EGF receptor-deficient 3T3-NR6 cells. Rapidity and potency of protein synthesis inhibition of HeLa cells were equivalent for the two chimeric conjugates, as was the degree to which colony-forming ability was reduced. However, ammonium chloride enhanced the toxicity of EGF-RTA but not mAb 225-RTA, suggesting that the two toxic chimeric toxins--like the unconjugated receptor-binding moieties--are processed differently by HeLa cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.1041310314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!