Mutations in PB2 and HA are crucial for the increased virulence and transmissibility of H1N1 swine influenza virus in mammalian models.

Vet Microbiol

Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China. Electronic address:

Published: February 2022

Genetic analyses indicated that the pandemic H1N1/2009 influenza virus originated from a swine influenza virus (SIV). However, SIVs bearing the same constellation of genetic features as H1N1/2009 have not been isolated. Understanding the adaptation of SIVs with such genotypes in a new host may provide clues regarding the emergence of pandemic strains such as H1N1/2009. In this study, an artificial SIV with the H1N1/2009 genotype (rH1N1) was sequentially passaged in mice through two independent series, yielding multiple mouse-adapted mutants with high genetic diversity and increased virulence. These experiments were meant to mimic genetic bottlenecks during adaptation of wild viruses with rH1N1 genotypes in a new host. Molecular substitutions in the mouse-adapted variants mainly occurred in genes encoding surface proteins (hemagglutinin [HA] and neuraminidase [NA]) and polymerase proteins (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acid [PA] proteins and nucleoprotein [NP]). The PB2 and HA substitutions were detected at high frequencies in both passage lines and enhanced the replication and pathogenicity of rH1N1 in mice. Moreover, these substitutions also enabled direct transmission of rH1N1 in other mammals such as guinea pigs. PB2 showed enhanced polymerase activity and HA showed increased stability compared with the wild-type proteins. Our findings indicate that if SIVs with H1N1/2009 genotypes emerge in pigs, they could undergo rapid adaptive changes during infection of a new host, especially in the PB2 and HA genes. These changes may facilitate the emergence of pandemic strains such as H1N1/2009.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2021.109314DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
increased virulence
8
swine influenza
8
genotypes host
8
emergence pandemic
8
pandemic strains
8
strains h1n1/2009
8
polymerase basic
8
h1n1/2009
6
polymerase
5

Similar Publications

Frequency of Bovine Respiratory Disease Complex Bacterial and Viral Agents Using Multiplex Real-Time qPCR in Quebec, Canada, from 2019 to 2023.

Vet Sci

December 2024

Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada.

The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc.

View Article and Find Full Text PDF

As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.

View Article and Find Full Text PDF

The host range of HPAIV H5N1 was recently expanded to include ruminants, particularly dairy cattle in the United States (US). Shortly after, human H5N1 infection was reported in a dairy worker in Texas following exposure to infected cattle. Herein, we rescued the cattle-origin influenza A/bovine/Texas/24-029328-02/2024(H5N1, rHPbTX) and A/Texas/37/2024(H5N1, rHPhTX) viruses, identified in dairy cattle and human, respectively, and their low pathogenic forms, rLPbTX and rLPhTX, with monobasic HA cleavage sites.

View Article and Find Full Text PDF

Background: Prior studies have reported lower effectiveness of XBB.1.5-adapted vaccines against hospitalization related to the Omicron JN.

View Article and Find Full Text PDF

Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China.

BMC Genomics

December 2024

The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.

The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!