In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks (Anas platyrhyncha).

Ecotoxicol Environ Saf

Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China. Electronic address:

Published: January 2022

Excess molybdenum (Mo) and cadmium (Cd) are widespread environmental and industrial metal pollutants. To evaluate the combined effects of Mo and Cd on calcium homeostasis and autophagy in duck kidneys. 160 healthy 7-day-old ducks (Anas platyrhyncha) were randomized into 4 groups and given to a basic diet, adding various doses of Mo or/and Cd for 16 weeks. On the 4th, 8th, 12th and 16th weeks, kidney tissues were collected. The study exhibited that Mo or/and Cd caused histological abnormality, reduced the activities of Ca ATPase, Mg ATPase, Na-K ATPase and Ca-Mg ATPase, K and Mg contents, and increased Na and Ca contents, upregulated CaMKKβ, CaMKIIɑ, CaN, IPR, GRP78, GRP94, CRT mRNA levels and CaMKIIɑ, CaN, IPR protein levels. Moreover, exposure to Mo or/and Cd notably promoted the amount of autophagosomes and LC3II immunofluorescence, upregulated AMPKα1, ATG5, Beclin-1, LC3A, LC3B mRNA levels and Beclin-1, LC3II/LC3I protein levels, downregulated mTOR, Dynein, P62 mRNA levels and P62 protein level. The changes of above indicators in combined group were more obvious. Overall, the results suggest that Mo and Cd co-exposure may can synergistically induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.113099DOI Listing

Publication Analysis

Top Keywords

calcium homeostasis
12
mrna levels
12
molybdenum cadmium
8
nephrotoxicity causing
8
causing calcium
8
homeostasis disorder
8
disorder autophagy
8
autophagy ducks
8
ducks anas
8
anas platyrhyncha
8

Similar Publications

With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses.

View Article and Find Full Text PDF

Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca overload.

Int J Biol Macromol

January 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.

View Article and Find Full Text PDF

Chemogenetic modulation of parathyroid hormone secretion alleviates osteoporosis in ovariectomized rats.

Biochem Biophys Res Commun

January 2025

Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Parathyroid hormone (PTH) is critical for regulating calcium and phosphate homeostasis, and its dysregulation contributes to osteoporosis. Current methods for precise control of PTH secretion are limited. This study explores chemogenetic tools to regulate PTH secretion in parathyroid chief cells via Gq/Gi signaling.

View Article and Find Full Text PDF

Background: Disturbances in calcium and phosphorus homeostasis resulting from chronic kidney disease (CKD) may lead to atherosclerotic changes in blood vessels, potentially altering bone marrow perfusion. Our study aimed to investigate vertebral bone marrow perfusion using dynamic contrast-enhanced (DCE) MRI with a pharmacokinetic model. We also measured possible changes in water and fat content and bony trabeculae using T2* quantification, MR spectroscopy (MRS), and microcomputed tomography (μCT).

View Article and Find Full Text PDF

Fine-tuned calcium homeostasis is crucial for murine erythropoiesis.

FEBS J

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.

Intracellular calcium (Ca) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca levels during mouse erythroid development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!