Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solar anti-/deicing can solve icing problems by converting sunlight into heat. One of the biggest problems, which has long been plaguing the design of solar anti-/deicing surfaces, is that photothermal materials are always lightproof and appear black, because of the mutual exclusiveness between generating heat and retaining transparency. Herein, a highly transparent and scalable solar anti-/deicing surface is reported, which enables the coated glass to exhibit high transparency (>77% transmittance at 550 nm) and meanwhile causes a >30 °C surface temperature increase relative to the ambient environment under 1.0 sun illumination. Such a transparent anti-/deicing surface can be fabricated onto a large class of substrates (e.g., glass, ceramics, metals, plastics), by applying a solid omniphobic slippery coating onto layer-by-layer-assembled ultrathin MXene multilayers. Hence, the surface possesses a self-cleaning ability to shed waterborne and oil-based liquids thanks to residue-free slipping motion. Passive anti-icing and active deicing capabilities are, respectively, obtained on the solar thermal surface, which effectively prevents water from freezing and simultaneously melts pre-formed ice and thick frost. The self-cleaning effect enables residue-free removal of unfrozen water and interfacially melted ice/frost to boost the anti-/deicing efficiency. Importantly, the surface is capable of self-healing under illumination to repair physical damage and chemical degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202108232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!