Background: Immune reconstitution bone loss (IRBL) is a common side-effect of antiretroviral therapy (ART) in people with human immunodeficiency virus (PWH). Immune reconstitution bone loss acts through CD4+ T-cell/immune reconstitution-induced inflammation and is independent of antiviral regimen. Immune reconstitution bone loss may contribute to the high rate of bone fracture in PWH, a cause of significant morbidity and mortality. Although IRBL is transient, it remains unclear whether bone recovers, or whether it is permanently denuded and further compounds bone loss associated with natural aging.

Methods: We used a validated IRBL mouse model involving T-cell reconstitution of immunocompromised mice. Mice underwent cross-sectional bone phenotyping of femur and/or vertebrae between 6 and 20 months of age by microcomputed tomography (µCT) and quantitative bone histomorphometry. CD4+ T cells were purified at 20 months to quantify osteoclastogenic/inflammatory cytokine expression.

Results: Although cortical IRBL in young animals recovered with time, trabecular bone loss was permanent and exacerbated skeletal decline associated with natural aging. At 20 months of age, reconstituted CD4+ T cells express enhanced osteoclastogenic cytokines including RANKL, interleukin (IL)-1β, IL-17A, and tumor necrosis factor-α, consistent with elevated osteoclast numbers.

Conclusions: Immune reconstitution bone loss in the trabecular compartment is permanent and further exacerbates bone loss due to natural aging. If validated in humans, interventions to limit IRBL may be important to prevent fractures in aging PWH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373144PMC
http://dx.doi.org/10.1093/infdis/jiab631DOI Listing

Publication Analysis

Top Keywords

bone loss
32
immune reconstitution
20
reconstitution bone
20
bone
13
natural aging
12
loss
8
exacerbates bone
8
mouse model
8
associated natural
8
months age
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!