The Berry curvature and orbital magnetic moment (OMM) come from either inversion symmetry or time-reversal symmetry breaking in quantum materials. Here, we demonstrate the significance of OMMs and Berry curvature in planar Hall effect (PHE) in antiferromagnetic topological insulator MnBiTe flakes. We observe a PHE with period of π and positive magnitude at low fields, resembling the PHE of the surface states in nonmagnetic topological insulators. Remarkably, a novel predominant PHE with period of π/2 and negative magnitude emerges below the Néel temperature with > 10 T. Our theoretical calculations reveal that this unusual π/2-periodic PHE originates from the topological OMMs of bulk Dirac electrons. Moreover, the competition between the contributions from the bulk and the surface states leads to nontrivial evolutions of PHE and anisotropic magnetoresistance. Our results reveal intriguing electromagnetic response due to the OMMs and also provide insight into the potential applications of magnetic topological insulators in spintronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c03232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!