Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects . Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.1c00531DOI Listing

Publication Analysis

Top Keywords

soft bioelectronics
20
soft
8
nanostructured materials
8
unconventional device
8
bioelectronics
6
bioelectronics based
4
based nanomaterials
4
nanomaterials advances
4
advances nanostructured
4
materials unconventional
4

Similar Publications

Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.

ACS Cent Sci

December 2024

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.

View Article and Find Full Text PDF

A Wet-Adhesion and Swelling-Resistant Hydrogel for Fast Hemostasis, Accelerated Tissue Injury Healing and Bioelectronics.

Adv Mater

December 2024

Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.

Hydrogel bioadhesives with adequate wet adhesion and swelling resistance are urgently needed in clinic. However, the presence of blood or body fluid usually weakens the interfacial bonding strength, and even leads to adhesion failure. Herein, profiting from the unique coupling structure of carboxylic and phenyl groups in one component (N-acryloyl phenylalanine) for interfacial drainage and matrix toughening as well as various electrostatic interactions mediated by zwitterions, a novel hydrogel adhesive (PAAS) is developed with superior tissue adhesion properties and matrix swelling resistance in challenging wet conditions (adhesion strength of 85 kPa, interfacial toughness of 450 J m, burst pressure of 514 mmHg, and swelling ratio of <4%).

View Article and Find Full Text PDF

Wearable heart monitors are crucial for early diagnosis and treatment of heart diseases in non-clinical settings. However, their long-term applications require skin-interfaced materials that are ultrasoft, breathable, antibacterial, and possess robust, enduring on-skin adherence-features that remain elusive. Here, we have developed multifunctional porous soft composites that meet all these criteria for skin-interfaced bimodal cardiac monitoring.

View Article and Find Full Text PDF

PEDOTs-Based Conductive Hydrogels: Design, Fabrications, and Applications.

Adv Mater

December 2024

Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China.

Conductive hydrogels combine the benefits of soft hydrogels with electrical conductivity and have gained significant attention over the past decade. These innovative materials, including poly(3,4-ethylenedioxythiophene) (PEDOTs)-based conductive hydrogels (P-CHs), are promising for flexible electronics and biological applications due to their tunable flexibility, biocompatibility, and hydrophilicity. Despite the recent advances, the intrinsic correlation between the design, fabrications, and applications of P-CHs has been mostly based on trial-and-error-based Edisonian approaches, significantly limiting their further development.

View Article and Find Full Text PDF

Silicon (Si) is currently the most mature and reliable semiconductor material in the industry, playing a pivotal role in the development of modern microelectronics, renewable energy, and bio-electronic technologies. In recent years, widespread research attention has been devoted to the development of advanced flexible electronics, photovoltaics, and bio-interfaced sensors/detectors, boosting their emerging applications in distributed energy sources, healthcare, environmental monitoring, and brain-computer interfaces (BCIs). Despite the rigid and brittle nature of Si, a series of new fabrication technologies and integration strategies have been developed to enable a wide range of c-Si-based high-performance flexible photovoltaics and electronics, which were previously only achievable with intrinsically soft organic and polymer semiconductors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!