experimental evolution of pathogens to antibiotics is commonly used for the identification of clinical biomarkers associated with antibiotic resistance. Microdroplet emulsions allow exquisite control of spatial structure, species complexity, and selection microenvironments for such studies. We investigated the use of monodisperse microdroplets in experimental evolution. Using adaptation to doxycycline, we examined how changes in environmental conditions such as droplet size, starting lambda value, selection strength, and incubation method affected evolutionary outcomes. We also examined the extent to which emulsions could reveal potentially new evolutionary trajectories and dynamics associated with antimicrobial resistance. Interestingly, we identified both expected and unexpected evolutionary trajectories including large-scale chromosomal rearrangements and amplification that were not observed in suspension culture methods. As microdroplet emulsions are well-suited for automation and provide exceptional control of conditions, they can provide a high-throughput approach for biomarker identification as well as preclinical evaluation of lead compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022597PMC
http://dx.doi.org/10.1021/acsinfecdis.1c00564DOI Listing

Publication Analysis

Top Keywords

evolutionary trajectories
12
associated antimicrobial
8
antimicrobial resistance
8
experimental evolution
8
microdroplet emulsions
8
identification evolutionary
4
trajectories associated
4
resistance microfluidics
4
microfluidics experimental
4
evolution pathogens
4

Similar Publications

Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers.

Nat Plants

January 2025

State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.

Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Unlabelled: Immune escape is a critical hallmark of cancer progression and underlies resistance to multiple immunotherapies. However, it remains unclear when the genetic events associated with immune escape occur during cancer development. Here, we integrate functional genomics studies of immunomodulatory genes with a tumor evolution reconstruction approach to infer the evolution of immune escape across 38 cancer types from the Pan-Cancer Analysis of Whole Genomes dataset.

View Article and Find Full Text PDF

Seed size is a trait which determines survival rates for individual plants and can vary as a result of numerous trade-offs. In the palm family (Arecaceae) today, there is great variation in seed sizes. Past studies attempting to establish drivers for palm seed evolution have sometimes yielded contradictory findings in part because modern seed size variations are complicated by long-term legacies, including biogeographic differences across lineages.

View Article and Find Full Text PDF

A genomic variation map provides insights into potato evolution and key agronomic traits.

Mol Plant

January 2025

Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China. Electronic address:

Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!