AI Article Synopsis

  • Porous polymer scaffolds are important for tissue engineering because they support the delivery of stem cells and growth factors.
  • Scaffolds made from synthetic polymers often face challenges like a lack of bioactivity and uncontrolled release of growth factors, which can limit their effectiveness.
  • The study demonstrates that adding a metal-phenolic network to poly(dl-lactide) scaffolds improves growth factor release and supports stem cell growth, leading to better bone regeneration in a rat model compared to scaffolds without this enhancement.

Article Abstract

Porous polymer scaffolds are essential materials for tissue engineering because they can be easily processed to deliver stem cells or bioactive factors. However, scaffolds made of synthetic polymers normally lack a bioactive cell-material interface and undergo a burst release of growth factors, which may hinder their further application in tissue engineering. In this paper, a metal-phenolic network (MPN) was interfacially constructed on the pore surface of a porous poly(dl-lactide) (PPLA) scaffold. Based on the molecular gating property of the MPN supramolecular structure, the PPLA@MPN scaffold achieved the sustained release of the loaded molecules. In addition, the MPN coating provided a bioactive interface, thus encouraging the migration and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The PPLA@MPN scaffolds exhibited enhanced bone regeneration in a rat femoral defect model in vivo compared to PPLA, which is ascribed to the combined effect of sustained bone morphogenetic protein-2 (BMP-2) release and the osteogenic ability of MPN. This nanodressing technique provides a viable and straightforward strategy for enhancing the performance of porous polymer scaffolds in bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c19633DOI Listing

Publication Analysis

Top Keywords

porous polymer
12
polymer scaffolds
12
tissue engineering
12
enhanced bone
8
bone regeneration
8
stem cells
8
scaffolds
5
bone
5
metal phenolic
4
phenolic nanodressing
4

Similar Publications

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Preparation of Robust, Antireflective and Superhydrophobic Hierarchical Coatings on PMMA Substrates via Mechanical Locking and Chemical Bonding.

ACS Appl Mater Interfaces

January 2025

Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Antireflection (AR) coatings with mechanical robustness and superhydrophobic properties have wide potential applications in optical, electronic, and automotive fields. However, the fabrication of large-sized, robust, and multifunctional AR coatings on plastic/polymer substrates has been a challenging problem. In this study, we developed a bottom-up approach to produce mechanically robust, enhanced transmittance, and superhydrophobic coatings on poly(methyl methacrylate) (PMMA) substrate.

View Article and Find Full Text PDF

Non-Newtonian fluids are also widely used in a variety of scientific, engineering, and industrial domains, including the petroleum sector and polymer technologies. They are vital in the development of drag-reducing agents, damping and braking systems, food manufacturing, personal protective equipment, and the printing industry. Fluid movement and transport via porous materials draw a lot of attention; they are important in science and technology.

View Article and Find Full Text PDF

The effect of PEO/NaCl dual porogens in the fabrication of porous PCL membranes via a solid-state blending approach.

Sci Rep

January 2025

Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180, Jordan.

In this investigation, the influence of a combination of poly(ethylene-oxide) (PEO) and salt (NaCl) as water-soluble porogens on the synthesis of sustainable porous poly(ε-caprolactone) (PCL) membranes is explored. Nine mixture compositions are examined. PCL sheets are fabricated through the cryomilling, hot pressing, and porogen leaching approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!