Lacking elite haploid inducers performing high haploid induction rate (HIR) and agronomic performance is one of fundamental factors hindering the rapid adoption of doubled haploid technology in maize hybrid breeding, especially under tropical savanna climate. Breeding haploid inducers for specific agro-ecology, thus, is indispensable yet challenging. We used temperate inducer Stock6 as genetic source for haploid induction ability and eight tropical maize genotypes as principal donors for agronomic adaptation. Three cycles of modified ear-to-row with 5% intra-family selection were applied in a population set of 78 putative haploid inducer families emphasized on agronomic performance, anthocyanin intensity, and inducer seed set. Genetic gains, variance components, and heritability on given traits were estimated. Hierarchical clustering based on five selection criteria was performed to investigate the phenotypic diversity of putative families. Cycle effect was predominant for all observed traits. Realized genetic gain was positive for HIR (0.40% per cycle) and inducer seed set (30.10% or 47.30 seeds per ear per cycle). In this study, we reported the first haploid inducers for regions under tropical savanna climate. Three inducer families, KHI-42, KHI-54, and KHI-64, were promising as they possessed HIR about 7.8% or 14 haploid seeds per tester ear and inducer seed rate about 95.0% or 208 inducer seeds per ear. The breeding method was effective for enhancing the seed set and the expression of anthocyanin marker of inducers, yet it showed a low effectiveness to improve haploid induction rate. Introgression of temperate inducer Stock6 into tropical gene pool followed by phenotypic selections through modified ear-to-row selection on inducer seed set and marker did not compromise the agronomic traits of tropical inducer families. Implications and further strategies for optimizing genetic gain on HIR are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706992 | PMC |
http://dx.doi.org/10.3390/plants10122812 | DOI Listing |
Front Genet
January 2025
National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.
The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt).
View Article and Find Full Text PDFPlant Methods
January 2025
Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Collage of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
Background: The rapid production of doubled haploids by anther culture technology is an important breeding method for awnless triticale. The aim of this study was to explore the effects of triticale genotype and the types and ratios of exogenous hormones in the medium on the efficiency of triticale anther culture.
Results: Anthers of five triticale genotypes were cultured on four different callus induction media and the calli were induced to differentiate into green plants by culture on three different differentiation media.
Biol Reprod
January 2025
Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan.
Artificially induced haploidy is lethal in vertebrates, although it is useful for genetic screening and genome editing due to its single set of genomes. Haploid embryonic stem (ES) cell lines in mammals contribute to genetic studies and the production of gametes derived from haploid ES cells. In fish breeding, doubled haploids (DHs) induced by artificially induced gynogenesis are used to generate isogenic gametes for cloning purposes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!