Optimization of Protoplast Isolation from Leaf Mesophylls of Chinese Cabbage ( ssp. ) and Subsequent Transfection with a Binary Vector.

Plants (Basel)

Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea.

Published: November 2021

Chinese cabbage is an important dietary source of numerous phytochemicals, including glucosinolates and anthocyanins. The selection and development of elite Chinese cabbage cultivars with favorable traits is hindered by a long breeding cycle, a complex genome structure, and the lack of an efficient plant transformation protocol. Thus, a protoplast transfection-based transformation method may be useful for cell-based breeding and functional studies involving Chinese cabbage plants. In this study, we established an effective method for isolating Chinese cabbage protoplasts, which were then transfected with the pCAMBIA1303 binary vector according to an optimized PEG-based method. More specifically, protoplasts were isolated following a 4 h incubation in a solution comprising 1.5% (/) cellulase, 0.25% (/) macerozyme, 0.25% (/) pectinase, 0.5 M mannitol, 15 mM CaCl, 25 mM KCl, 0.1% BSA, and 20 mM MES buffer, pH 5.7. This method generated 7.1 × 10 protoplasts, 78% of which were viable. The reporter gene in pCAMBIA1303 was used to determine the transfection efficiency. The Chinese cabbage protoplast transfection rate was highest (68%) when protoplasts were transfected with the 40 μg binary vector for 30 min in a solution containing 40% PEG. The presence of and in the protoplasts was confirmed by PCR. The methods developed in this study would be useful for DNA-free genome editing as well as functional and molecular investigations of Chinese cabbage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708831PMC
http://dx.doi.org/10.3390/plants10122636DOI Listing

Publication Analysis

Top Keywords

chinese cabbage
28
binary vector
12
protoplasts transfected
8
chinese
7
cabbage
7
protoplasts
5
optimization protoplast
4
protoplast isolation
4
isolation leaf
4
leaf mesophylls
4

Similar Publications

Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.

Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.

View Article and Find Full Text PDF

L-Cysteine Treatment Delays Leaf Senescence in Chinese Flowering Cabbage by Regulating ROS Metabolism and Stimulating Endogenous HS Production.

Foods

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of via Targeting PqsR.

Int J Mol Sci

December 2024

Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.

As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.

View Article and Find Full Text PDF

Effects of SGSF043 on the Germination Activity of Chinese Cabbage Seeds: Evidence from Phenotypic Indicators, Stress Resistance Indicators, Hormones and Functional Genes.

Plants (Basel)

December 2024

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

In this study, the effect of spp. on the seed germination of cabbage, a cruciferous crop, was investigated. The effects of this strain on the seed germination vigor, bud growth and physiological characteristics of Chinese cabbage were analyzed by a seed coating method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!