This research aims to assess the efficiency of the synthesized corncob as a cost-effective and eco-friendly adsorbent for the removal of heavy metals. Therefore, to carry out the intended research project, initially, the corncob was doped with nanoparticles to increase its efficiency or adsorption capacity. The prepared adsorbent was evaluated for the adsorption of cadmium (Cd) and chromium (Cr) from aqueous media with the batch experiment method. Factors that affect the adsorption process are pH, initial concentration, contact time and adsorbent dose. The analysis of Cd and Cr was performed by using atomic absorption spectrometry (AAS), while the characterization of the adsorbent was performed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that there is a significant difference before and after corncob activation and doping with CeO nanoparticles. The maximum removal for both Cd and Cr was at a basic pH with a contact time of 60 min at 120 rpm, which is 95% for Cd and 88% for Cr, respectively. To analyze the experimental data, a pseudo-first-order kinetic model, pseudo-second-order kinetic model, and intra-particle diffusion model were used. The kinetic adsorption studies confirmed that the experimental data were best fitted with the pseudo-second-order kinetic model (R = 0.989) and intra-particle diffusion model (R = 0.979). This work demonstrates that the cerium oxide/corncob nanocomposite is an inexpensive and environmentally friendly adsorbent for the removal of Cd and Cr from wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706510PMC
http://dx.doi.org/10.3390/polym13244464DOI Listing

Publication Analysis

Top Keywords

adsorbent removal
12
kinetic model
12
cerium oxide/corncob
8
oxide/corncob nanocomposite
8
cost-effective eco-friendly
8
eco-friendly adsorbent
8
removal heavy
8
heavy metals
8
contact time
8
experimental data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!