Spray-dried chitosan/NaCl/maltodextrin microparticles have the potential to be used to enhance saltiness; however, its notable hygroscopicity results in handling and storage problems, thus limiting its application. In the present study, we attempted to introduce maltodextrin, microcrystalline cellulose (MCC), and waxy starch (WS) as excipients into the spray drying formulation of microparticles to reduce the cohesiveness and caking behavior and improve the yield simultaneously by ameliorating the moisture absorption tendency. The prepared microparticles showed a spherical appearance and had particle sizes ranging from 6.29 to 7.64 μm, while the sizes of the NaCl crystals embedded in the microparticles were 0.36 to 1.24 μm. The crystalline reflections of WS and MCC were retained in the microparticles after the spray-drying process. The handling properties were assessed to be acceptable. The formulation with only maltodextrin as the excipient showed a high moisture absorption rate of 2.83 g/100 g·h and a caking strength of 3.27 kg. The addition of MCC and WS significantly reduced the hygroscopic rate and caking strength. The spray-dried products provided better saltiness perception than native NaCl; as such, they may be promising for seasoning dry food products to achieve sodium intake reduction in the food industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706731PMC
http://dx.doi.org/10.3390/polym13244302DOI Listing

Publication Analysis

Top Keywords

chitosan/nacl/maltodextrin microparticles
8
spray-drying process
8
moisture absorption
8
caking strength
8
microparticles
6
formulation evaluation
4
evaluation chitosan/nacl/maltodextrin
4
microparticles saltiness
4
saltiness enhancer
4
enhancer study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!